Fibers of Bamboo and Hem Palm Tree

2001 ◽  
Vol 702 ◽  
Author(s):  
Shigeyasu Amada

ABSTRACTBamboo is a typical composite material which is axially reinforced by very strong fibers. So that, the fibers play an important role for the bamboo structure. The elastic properties of the bamboo culm have been measured only by tensile test so far, which needs a large specimen. Recently ultra-sonic technique, which has a simple procedure and uses a small specimen, has been applied to woods as well as metals. This report reviews about the elastic properties of bamboo and Hemp palm fibers. The Young's modulus and Poisson's ratio of the bamboo fibers are measured by ultra-sonic method with a transmitting wave. On the other hand, the strength of the bamboo and Hemp palm fibers are measured by the tensile tests. Using the volume fraction of fibers in the specimen and mixture principle, the Young's modulus and strength of the fibers and parenchyma were obtained. The fiber has a high strength up to 1GPa and an strong anisotropic property because its axial Young's modulus has 7 times higher than the one in the transverse direction.

2011 ◽  
Vol 146 ◽  
pp. 12-26 ◽  
Author(s):  
A. Gherissi ◽  
R.Ben Cheikh ◽  
E. Dévaux ◽  
Fethi Abbassi

In this study, we present the manufacturing process of two new composites materials in the form of long fibers of polylactic-acid (PLA) or polypropylene (PP), reinforced by cellulose whiskers micro-fibers loads. In order to evaluate the mechanical properties of these advanced materials, a several uniaxial tensile tests were carried out. The PP and the PLA have initially been spinning without the addition of cellulose whiskers micro-fibers. In order to study the effects of cellulose whiskers micro-fibers reinforcements in the Mechanical behavior of the PLA and PP filaments, we determinate the proprieties of these advanced material from the tensile results. For the PP composite filaments material case, the whiskers reinforcement increases Young's modulus and failure resistance, but it reduces the limit strength failure. For the PLA composites the addition of 1% wt of cellulose whiskers from the total volume fraction of the material, increase the Young’s modulus more than 50% and a decrease of the failure resistance and the limit strength of composite. The obtained composites fibers are very rigid and brittle. What follows, that the addition of cellulose whiskers micro fibers in PP matrix, provides mechanical properties more convenient compared to the PLA matrix.


Hitherto, investigations into the elastic properties of metals have been confined to comparatively low temperatures. Gray, Dunlop, and Blyth have measured the modulus of rigidity and Young’s modulus for wires up to temperatures of 100° C., and found that both these quantities decrease as the temperature rises. Martens determined the influence of heat on the strength of iron up to temperatures of 600° C., but his experiments were the ordinary tensile tests carried to rupture, and though he also found a substantial diminution of Young’s modulus with rise of temperature, he did not go into the point fully, being mainly concerned with breaking stress and elongation. In the experiments here described the elastic properties of steel and iron have been investigated at higher temperatures, ranging up to 800° C., and for stresses greatly below that required to rupture the material. We have found that as the temperature rises the stress-strain relations undergo a remarkable change, which may best be expressed by saying that what is variously called the “time-effect,” or “elastische nachwirkung,” or “creeping,” increases greatly with the temperature. Steel, at high temperatures, behaves like indiarubber or glass; if it is stressed for a time, and the stress removed, it does not at once recover, but after the immediate elastic recovery there is a slow contraction perceptible for many minutes. Such “creeping” can be detected at ordinary temperatures, but at a red heat it attains a different order of magnitude, becoming (in its total amount) a substantial fraction of the whole deformation.


2011 ◽  
Vol 13 ◽  
pp. 47-59 ◽  
Author(s):  
Seyedmehdi Mavalizadeh ◽  
Moones Rahmandoust ◽  
Andreas Öchsner

In this study, a finite element model of a representative volume element that contains a hollow and filled single-walled Carbon nanotube (SWCNT) in two case studies was generated. It was assumed that the nanocomposites have geometric periodicity with respect to local length scale and the elastic properties can be represented by those of the representative volume element (RVE). Elastic properties in agreement with existing literature values for the Carbon nanotube and the matrix were assigned. Then for the two case studies, the tensile test was simulated to find the effect of the geometry, i.e. the volume fraction of matrix and SWCNT's properties variation, on the effective Young's modulus of the structure. In another approach, by applying perpendicular loading to the tube direction, the effect of matrix volume fraction on the transverse Young's modulus was studied. The investigations showed that for both RVEs with filled SWCNT and hollow SWCNT, the effective Young's modulus of the structure decreases approximately linear as the matrix volume fraction increases. The value of Young's modulus of the RVE with a filled Carbon nanotube was obtained to be higher than the RVE with the hollow Carbon nanotube. In addition, by increasing the tube diameter, the effective Young's modulus of the structure increases and the transverse Young's modulus decreases approximately linear for filled tubes but this parameter remains rather constant in the case of the hollow tube by increasing the matrix volume fraction.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3026
Author(s):  
Arnaldo Leal-Junior ◽  
Anselmo Frizera ◽  
Carlos Marques

We report the development and characterizations of a fiber Bragg grating (FBG) sensor coated with different ultraviolet (UV) curable resins. The UV-curable resins were applied on the fiber after the FBG inscription and cured with an UV lamp. One set of samples used the NOA 68 resin and the other used NOA 88. The samples were characterized with respect to the temperature, moisture absorption and strain response. Furthermore, in order to understand the influence of the resin coating on the optical fiber’s mechanical properties, tensile tests were performed with the samples. Results show that all samples presented negligible sensitivity to moisture absorption in the 50-min long tests with the fibers immersed in a container filled with distillated water. Regarding the temperature responses, the coated FBGs presented higher sensitivity (13.84 pm/°C for NOA 88 and 12.76 pm/°C for NOA 68) than the uncoated FBGs due to the thermal expansion of the coatings. In the strain tests, all coated and uncoated samples presented similar sensitivities, but with a larger strain range applied for the coated samples (strains higher than 5500 µε) when compared with the uncoated samples (3500 µε). Moreover, the stress-strain curves of the coated samples indicated a Young’s modulus one order with magnitude lower than the one of the uncoated silica fiber, where the lowest Young’s modulus is 3.84 GPa and was obtained with the NOA 68 coating, which indicates the possibility of obtaining highly sensitive pressure and force sensors.


2019 ◽  
Vol 804 ◽  
pp. 1-6
Author(s):  
Jia Qi Zhu ◽  
Qing Sheng Yang ◽  
Xia Liu

Graphene-aluminum (Gr/Al) composite laminated by aluminum (Al) and graphene sheets alternately has excellent mechanical properties thanks to the high strength, high Young’s modulus and the two-dimensional atomic structure of graphene. In this study, the uniaxial tensile properties of Gr/Al nano-laminated composite are studied by molecular dynamics (MD) method. It is found that the thickness of Al layer has a significant effect on the tensile strength and Yang’s modulus of the Gr/Al composite. Composite with a smaller thickness of Al layer shows better properties. Graphene not only block propagation of dislocations, but bear most of the loads, resulting in higher Young's modulus, tensile strength and failure strain of the composites than those of pure Al. The simulation of temperature-effect shows that the Gr/Al composite is difficult to arise plastic deformation at low temperature, which lead to a higher strength and modulus of the composite. In addition, the effect of graphene stacking on the properties of composites is investigated. Through tensile tests at the vertical and parallel interfaces, it is found that graphene stacking may lead to a reduced performance of the composite.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3010
Author(s):  
Raphael Lamprecht ◽  
Florian Scheible ◽  
Marion Semmler ◽  
Alexander Sutor

Ultrasound elastography is a constantly developing imaging technique which is capable of displaying the elastic properties of tissue. The measured characteristics could help to refine physiological tissue models, but also indicate pathological changes. Therefore, elastography data give valuable insights into tissue properties. This paper presents an algorithm that measures the spatially resolved Young’s modulus of inhomogeneous gelatin phantoms using a CINE sequence of a quasi-static compression and a load cell measuring the compressing force. An optical flow algorithm evaluates the resulting images, the stresses and strains are computed, and, conclusively, the Young’s modulus and the Poisson’s ratio are calculated. The whole algorithm and its results are evaluated by a performance descriptor, which determines the subsequent calculation and gives the user a trustability index of the modulus estimation. The algorithm shows a good match between the mechanically measured modulus and the elastography result—more precisely, the relative error of the Young’s modulus estimation with a maximum error 35%. Therefore, this study presents a new algorithm that is capable of measuring the elastic properties of gelatin specimens in a quantitative way using only the image data. Further, the computation is monitored and evaluated by a performance descriptor, which measures the trustability of the results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


2021 ◽  
pp. 130308
Author(s):  
E.S.N. Lopes ◽  
L.U. dos Santos ◽  
R. Caram ◽  
K.N. Campo

Sign in / Sign up

Export Citation Format

Share Document