Preparation and Properties of Porous Si3N4/SiO2/BN Composite Ceramics

2012 ◽  
Vol 512-515 ◽  
pp. 828-831 ◽  
Author(s):  
Wei Dong ◽  
Chang An Wang ◽  
Lei Yu ◽  
Shi Xi Ouyang

Porous Si3N4/SiO2/BN composite ceramics with high strength and low dielectric constant were prepared by dry-pressing process and pressureless sintering at 1750°C for 1.5 h in flow nitrogen. The influences of BN content on microstructure, porosity, mechanical and dielectric properties of the porous Si3N4/SiO2/BN composite ceramics were discussed. The results showed that the porous Si3N4/SiO2/BN composite ceramics with porosity ranging from 29% to 48% were fabricated by adjusting the content of BN. The flexural strength of the porous Si3N4/SiO2/BN composite ceramics was 78215 MPa. The dielectric constant of the porous Si3N4/SiO2/BN composite ceramics was 3.9~5 at 1 MHz.

RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21662-21671 ◽  
Author(s):  
Weibing Dong ◽  
Yue Guan ◽  
Dejing Shang

To acquire low dielectric constant polyimide films with good mechanical and thermal properties and low CTE applied in microelectronic fields, three novel polyimides containing pyridine and –C(CF3)2– groups were firstly designed and synthesized.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000476-000482 ◽  
Author(s):  
Masao Tomikawa ◽  
Hitoshi Araki ◽  
Yohei Kiuchi ◽  
Akira Shimada

Abstract Progress of 5G telecommunication and mm radar for autopilot, high frequency operation is required. Insulator materials having low loss at high frequency is desired for the applications. We designed the low dielectric constant, and low dielectric loss materials examined molecular structure of the polyimide and found that permittivity 2.6 at 20GHz, dielectric loss 0.002. Furthermore, in consideration of mechanical properties such as the toughness and adhesion to copper from a point of practical use. Dielectric properties largely turned worse when giving photosensitivity. To overcome the poor dielectric properties, we designed the photosensitive system. After all, we successfully obtained 3.5 of dielectric constant and 0.004 of dielectric loss, and 100% of elongation at break. In addition, we offered a B stage sheet as well as varnish. These materials are applicable to re-distribution layer of FO-WLP, Interposer and other RF applications for microelectronics.


2012 ◽  
Vol 512-515 ◽  
pp. 1180-1183
Author(s):  
Qian Qian Jia ◽  
Hui Ming Ji ◽  
Shan Liu ◽  
Xiao Lei Li ◽  
Zheng Guo Jin

The (Ba, Sr)TiO3 (hereafter BST) ceramics are promising candidate for applying in tunable devices. MgO coated BST-Mg2TiO4 (BSTM-MT) composite ceramics were prepared to obtain the low dielectric constant, low dielectric loss, good dielectric constant temperature stability, and high tunability of BST ceramics. The Ba0.55Sr0.40Ca0.05TiO3 nanoparticles were coated with MgO using the precipitation method and then mixed with Mg2TiO4 powders to fabricate BSTM-MT composite ceramics. The morphologies, phases, elements, and dielectric properties of the sintered ceramics were investigated. The core-shell structure of BST powder wrapped with MgO was clearly observed from the TEM image. After sintered at 1100 °C for 2 h, the composite ceramics expressed dense microstructures from SEM images and two main phases BST and Mg2TiO4 were detected in the XRD patterns. The dielectric constant and loss tangent were both reduced after the coating. The reduced dielectric constant and loss tangent of BSTM-MT were 190, 0.0011 (2MHz), respectively. The ceramics exhibited the diffuse phase transition near the Curie temperature and the Curie temperature shifted from 10 °C to 5 °C after the coating. Since the continuous Ti-O bonds were disconnected with the MgO coating, the tunability was reduced to 15.14 % under a DC bias field of 1.1 kV/mm. The optimistic dielectric properties made it useful for the application of tunable capacitors and phase shifters.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


1991 ◽  
Vol 227 ◽  
Author(s):  
J-PH Ansermet ◽  
A. Kramer

ABSTRACTThe bismaleimide resin Matrimid 5292A (I) was cocured with an allylnadic-imide resin (EP 433) which contained a long aliphatic chain as backbone (II). Water uptake, swelling, and the dielectric properties (up to 300 MHz) were studied in cast plates. The dielectric constant varied from 5.4 in (I) to 3.2 in (II) at water saturation, compared to 3.1 in (I) to 2.7 in (II) in the dry state. The glass transition temperature stayed above 200 °C at less than 80 mol% of (II).


2008 ◽  
Vol 368-372 ◽  
pp. 412-413 ◽  
Author(s):  
Jie Zhang ◽  
Deng Xue Wu ◽  
Xiang Hui Chang ◽  
Tie Cheng Lu ◽  
Yi Hang Jiang ◽  
...  

Dielectric constant and dielectric dissipation of MgAl2O4 transparent nano-ceramics were measured at different frequencies. The results indicated that the transparent nano-ceramic has a very low dielectric constant and low dielectric dissipation in frequency range of 1K~9MHz, but the dissipation of is independent of frequency. The dielectric constant of the transparent nano-ceramic does not vary signifycantly with temperature.


Sign in / Sign up

Export Citation Format

Share Document