Effects of precursor aging and post-deposition treatment time on photo-assisted sol–gel derived low-dielectric constant SiO2 thin film on Si

2007 ◽  
Vol 38 (2) ◽  
pp. 227-230 ◽  
Author(s):  
K.Y. Cheong ◽  
F.A. Jasni
2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


2000 ◽  
Vol 617 ◽  
Author(s):  
Ian W. Boyd ◽  
Jun-Ying Zhang

AbstractIn this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.


1999 ◽  
Vol 594 ◽  
Author(s):  
Mengcheng Lu ◽  
C. Jeffrey Brinker

AbstractLow dielectric constant silica films are made using a surfactant templated sol-gel process (K∼2.5) or an ambient temperature and pressure aerogel process (K∼1.5). This paper will present the in-situ measurement and analysis of stress development during the making of these films, from the onset of drying till the end of heating. The drying stress is measured by a cantilever beam technique; the thermal stress is measured by monitoring the wafer curvature using a laser deflection method. During the course of drying, the surfactant templated films experience a low drying stress due to the influence of the surfactant on surface tension and extent of siloxane condensation. The aerogel films first develop a biaxial tensile stress due to solidification and initial drying. At the final stage of drying where the drying stress vanishes, dilation of the film recreates the porosity of the wet gel state, reducing the residual stress to zero. For the surfactant templated films, very small residual tensile stress remains after the heat treatment is finished (∼30MPa). Aerogel film has almost no measurable stress developed in the calcination process. In situ spectroscopic ellipsometry analysis during drying and heating, and TGA/DTA are all used to help understand the stress development.


1986 ◽  
Vol 72 ◽  
Author(s):  
G. V. Chandrashekhar ◽  
M. W. Shafer

AbstractDielectric properties have been measured for a series of porous and fully densified silica glasses, prepared by the sol-gel technique starting from Si-methoxide or Si-fume. The results for the partially densified glasses do not show any preferred orientation for porosity. When fully densified (˜2.25 gms/cc) without any prior treatment of the gels, they have dielectric constants of ≥ 6.5 and loss factors of 0.002 at 1 MHz, compared to values of 3.8 and <0.001 for commercial fused silica. There is no corresponding anomaly in the d.c. resistivity. Elemental carbon present to the extent of 400–500 ppm is likely to be the main cause for this enhanced dielectric constant. Extensive cleaning of the gels prior to densification to remove this carbon were not completely successful pointing to the difficulty in preparing high purity, low dielectric constant glasses via the organic sol-gel route at least in the bulk form.


2008 ◽  
Vol 47-50 ◽  
pp. 973-976 ◽  
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Hong Zheng ◽  
Hai Tao Huang ◽  
...  

A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.


Langmuir ◽  
2004 ◽  
Vol 20 (16) ◽  
pp. 6658-6667 ◽  
Author(s):  
Ronald C. Hedden ◽  
Hae-Jeong Lee ◽  
Christopher L. Soles ◽  
Barry J. Bauer

Sign in / Sign up

Export Citation Format

Share Document