Preparation of Doped Lanthanum Gallate Electrolyte for SOFC by Pulsed Laser Deposition

2002 ◽  
Vol 730 ◽  
Author(s):  
Seiji Kanazawa ◽  
Takeshi Ito ◽  
Kenji Yamada ◽  
Toshikazu Ohkubo ◽  
Yukiharu Nomoto ◽  
...  

AbstractIn this study, doped lanthanum gallate (LSGM with the composition La0.9Sr0.1Ga0.8Mg0.2O3-δ, LSGMC with the composition La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ) films for an electrolyte of the solid oxide fuel cell (SOFC) were prepared by pulsed laser deposition (PLD) technique. In the vacuum chamber, LSGM or LSGMC targets were set on the rotating target holder. A KrF excimer laser was introduced into the chamber at an incident angle of about 45 degree. The doped LaGaO3 film was deposited onto NiO substrates without heating in argon ambient gas. The NiO substrate can be used directly as an electrode in the fabrication of the SOFC. The deposited LSGM films were characterized by X-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS) and scanning electron microscopy (SEM). As-deposited films were amorphous. After post annealing at 1273K for 6-10 hours, crystalline LaGaO3 was obtained. Films with thickness greater than several 10 μm showed an uniform and dense morphology. No gas leakage was found using thick films, which is an important characteristic for an electrolyte in fuel cells. The composition of the deposited films was slightly different to that of the target.

2014 ◽  
Vol 32 (4) ◽  
pp. 541-546 ◽  
Author(s):  
P. Nagaraju ◽  
Y. Vijayakumar ◽  
D. Phase ◽  
V. Reddy ◽  
M. Ramana Reddy

AbstractMicrostructural properties of Ce1-x GdxO2-δ (x = 0 to 0.3) thin films prepared by pulsed laser deposition technique were studied. The thin films were deposited on Si(100) substrate at a substrate temperature of 973 K at the oxygen partial pressure of 0.2 Pa using KrF excimer laser with energy of 220 mJ. The prepared thin films were characterized by X-ray diffraction, Raman spectroscopy and atomic force microscopy. X-ray diffraction analysis confirmed the polycrystalline nature of the thin films. Crystallite size, strain and dislocation density were calculated. The Raman studies revealed the formation of Ce-O with the systematic variation of peak intensity and full width half maxima depending on concentration of gadolinium dopant. The thickness of the films was estimated using Talystep profiler. The surface roughness was estiamted based on AFM.


Author(s):  
Boscope M. K. Sze ◽  
C. N. Wong ◽  
K. H. Wong

Thin films of Ce0.8Gd0.2O2 and Ce0.8Sm0.2O2 oxide electrolytes have been fabricated by pulsed laser deposition on (100)LaAlO3 substrates at temperature from 300 °C to 700 °C and under 100 mTorr oxygen ambient pressure. The crystal structure, crystallinity and lattice parameters of the as-deposited films are investigated by X-ray diffraction. High quality epitaxial and polycrystalline films are obtained at different growth conditions. We have made impedance measurements on these films in the temperature range from 300 °C to 850 °C. Our results reveal a mark increase in the ionic conductivity of these films in comparison with those of the corresponding bulk materials. The observed enhancements are closely related to the crystallinity of the films. Conductivities of 0.1 S/cm or higher for Ce0.8Gd0.2O2 and Ce0.8Sm0.2O2 are obtained at 500 °C. We have demonstrated that in utilizing these thin films solid oxide fuel cells operating at below 500 °C are possible.


1995 ◽  
Vol 382 ◽  
Author(s):  
Randolph E. Treece ◽  
Paul Dorsey ◽  
James S. Horwitz ◽  
Syed Qadri ◽  
Douglas B. Chrisey

ABSTRACTHigh-quality thin-film superlattices of permalloy (NiFe) and silver (Ag) have been grown by pulsed laser deposition (PLD) for the first time. The alternating metallic layers weregrown from individual NiFe and Ag targets utilizing an automated multi-target holder coupled to a conventional PLD system. The targets were ablated at a base pressure of 4×10−7 Torr and the material deposited on room-temperature (100) silicon and on fused silica substrates. The films were characterized by X-ray diffraction (XRD), magnetic field-dependent resistivity, and ferromagnetic resonance (FMR). XRD was used to confirm uniform bilayer thicknesses. The magnetic field-dependent resistance measurements indicated the presence of magnetoresistance in the deposited films. An as-deposited film with a bilayer thickness of 75 Å demonstrated a roomtemperature magnetoresistive effect of 0.15 %. FMR has been used to determine the relationship between NiFe magnetism and the observed magnetoresistance.


1999 ◽  
Vol 567 ◽  
Author(s):  
S. Boughaba ◽  
M. U. Islam ◽  
G. I. Sproule ◽  
M. J. Graham

ABSTRACTA large-area pulsed laser deposition (PLD) technique was used to uniformly grow tantalum pentoxide (Ta2O5) films on silicon wafers of 75 mm diameter. A KrF excimer laser beam was focused onto a 90 mm diameter Ta2O5 target to induce its ablation in oxygen gas ambient. The large-area coverage was obtained by rastering the laser beam over the radius of the rotating target, while the substrate was rotated simultaneously.The tantalum oxide films were characterized in terms of uniformity of thickness, composition, structure, and optical properties across the substrate. Average deviations typically below 1% were achieved in thickness, composition, indices of refraction and optical energy band-gap. Identical X-ray diffraction spectra were obtained at the center, middle of radius and edge of the wafers.


1994 ◽  
Vol 358 ◽  
Author(s):  
Randolph E. Treece ◽  
J. S. Horwitz ◽  
D. B. Chrisey ◽  
J. Tang ◽  
R. S. Williams

ABSTRACTSemiconducting SnxSi1−x (0≤x≤0.6) thin-film alloys have been grown by pulsed laser deposition (PLD). These new materials are amorphous to X-rays and display small positive optical band gaps, suggesting potential applications in solar cells. The tin silicide films were grown by depositing very thin (1–30 Å) alternating atomic layers from individual Sn and Si targets utilizing an automated multi-target holder coupled to a conventional PLD system. The value of x was selected by controlling the thickness of the atomic layers. The films were characterized by X-ray diffraction, optical absorption, Rutherford backscattering spectroscopy, temperature-dependent resistivity, and X-ray photoelectron spectroscopy. Tin segregation is prevented by keeping the Sn layer thickness below a critical value. Compositions beyond x > 0.6 led to semimetallic SnxSi1−x films with tin crystallites.


2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2021 ◽  
Vol 19 (10) ◽  
pp. 34-40
Author(s):  
B.Y. Taher ◽  
A.S. Ahmed ◽  
Hassan J. Alatta

In this study, CdO2 (1-X) AlX thin films were prepared by pulsed-laser deposition. The X-ray diffraction patterns reveal that the films were polycrystalline with a cubic structure, and the composition of the material changed from CdO at the target to CdO2 in the deposited thin films. The intensity of the diffraction peak (or the texture factor) decreases with increasing hkl and has a maximum value for the (111) plane, the interplanar distance and diffraction angle has a high deviation from the standard value for the (111) plane and. This deviation is affected by doping concentration and shows its highest deviation at a doping concentration of 0.1 wt.% for the (111) and (200), and the 0.3 and 0.5 wt.% for the (210) and (220) planes, respectively. The crystalline size take a less value at plane has a high texture factor that is (111) plane and decreases with increase the doping concentration.


2003 ◽  
Vol 777 ◽  
Author(s):  
Monica Sorescu ◽  
Agnieszka Grabias ◽  
Lucian Diamandescu

AbstractNanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5 - 40 nm with a total multilayer thickness of 100 -120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 °C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 °C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed.


2010 ◽  
Vol 25 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Zhifeng Ying ◽  
Wentao Tang ◽  
Zhigao Hu ◽  
Wenwu Li ◽  
Jian Sun ◽  
...  

The structure and properties of HfO2 films deposited by plasma assisted reactive pulsed laser deposition and annealed in N2 were studied upon thermal annealing as well as the evaluation of thermal stability by Fourier transform infrared spectroscopy, spectroscopic ellipsometry, and optical transmission measurements. The as-deposited HfO2 films appear predominantly monoclinic with an amorphous matrix which becomes crystallized after high-temperature annealing. No interfacial SiOx is observed for the as-deposited films on Si. The deposited HfO2 films exhibit good thermal stability and show excellent transparency in a wide spectral range with optical band gap energies of 5.65–5.73 eV depending on annealing temperature. An improvement in the optical properties by high-temperature annealing is also observed.


Sign in / Sign up

Export Citation Format

Share Document