Lifetime Measurements of Stain Etched and Passivated Porous Silicon

2003 ◽  
Vol 762 ◽  
Author(s):  
Ricardo Guerrero-Lemus ◽  
Fathi A. Ben-Hander ◽  
Cristoffer Ballif ◽  
Ali Kenanoglu ◽  
Dietmar Borchert ◽  
...  

AbstractIn this work we present the first experimental study of photocarrier lifetimes in p-type and n-type Si substrates in which stain etched porous silicon (PS) has been formed on the surface. The lifetime values have been obtained before and after the surface passivation of the samples. The surface pasivation has been produced by two different techniques: (i) hydrogen passivation by immersion of the samples in a HF solution; and (ii) deposition of SiNx in a plasma enhanced chemical vapour deposition system. The results show a degradation of the photocarrier lifetime when the porous layers are not adequately passivated. This lifetime degradation is mainly associated to a large concentration of rapid recombination centres located at the Si/PS interface. We have also detected a weak influence of the PS outermost dangling bonds to the photocarrier lifetimes.

BIBECHANA ◽  
2012 ◽  
Vol 8 ◽  
pp. 46-52
Author(s):  
E Haji-Ali

Porous silicon layers were prepared by both chemical and electrochemical methods on n- and ptype Si substrates. In the former technique, light emission was obtained from p-type and n-type samples. It was found that intense light illumination during the preparation process was essential for PSi formation on n-type substrates.An efficient electrochemical cell with some useful features was designed for electrochemical etching of silicon. Various preparation parameters were studied and photoluminescence emissions ranging from dark red to light blue were obtained from PSi samples prepared on p-type substrates. N-type samples produced emissions ranging from dark red to orange-yellow. Electroluminescence of porous silicon samples showed that the color of the emission was the same as the photoluminescence color of the sample, and its intensity and duration depended on the current density passed through the sample. The effects of exposure of samples to air, storage in vacuum, and heat-treatment in air on luminescence intensity of the samples and preparation of patterned porous layers were also studied.Keywords: Porous silicon layers; photoluminescence; electroluminescenceDOI: http://dx.doi.org/10.3126/bibechana.v8i0.4897  BIBECHANA 8 (2012) 46-52


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


2006 ◽  
Vol 956 ◽  
Author(s):  
Paul William May ◽  
Matthew Hannaway

ABSTRACTUltrananocrystalline diamond (UNCD) films have been deposited using hot filament chemical vapour deposition using Ar/CH4/H2 gas mixtures plus additions of B2H6 in an attempt to make p-type semiconducting films. With increasing additions of B2H6 from 0 to 40,000 ppm with respect to C, the film growth rate was found to decrease substantially, whilst the individual grain sizes increased from nm to μm. With 40,000 ppm of B2H6, crystals of boric oxide were found on the substrate surface, which slowly hydrolysed to boric acid on exposure to air. These results are rationalised using a model for UNCD growth based on competition for surface radical sites between CH3 and C atoms.


Author(s):  
Shereen M. Faraj ◽  
Shaimaa M. Abd Al-Baqi ◽  
Nasreen R. Jber ◽  
Johnny Fisher

Porous silicon (PS) has become the focus of attention in upgrading silicon for optoelectronics. In this work, various structures were produced depending on the formation parameters by photo-electrochemical etching (PECE) process of n- and p-type silicon wafer at different time durations (5–90 mins) and different current densities (5, 15, and 20 mA/cm2) for each set of time durations. Diode lasers of 405 nm, 473 nm, and 532 nm wavelengths, each 50 mW power, were used to illuminate the surface of the samples during the etching process. The results showed that controlled porous layers were achieved by using blue laser, giving uniform structure which can make it possible to dispense with expensive methods of patterning the silicon.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 353-356
Author(s):  
C. Aktik ◽  
J. F. Currie ◽  
F. Bosse ◽  
R. W. Cochrane ◽  
J. Auclair

Si-doped GaAs epitaxial layers grown by metal-organic chemical vapour deposition exhibit substantial carrier density loss after rapid thermal annealing (RTA) at temperatures higher than 850 °C. Hall-effect, capacitance–voltage, deep-level transient spectroscopy, and secondary ion mass spectroscopy measurements were performed on samples before and after RTA. We show that the reduction of free-carrier concentration in the entire thickness of the epitaxial layer is accompanied by the deterioration of the mobility and the enhancement of donor-like deep-level concentration at 0.305 eV below the conduction band, which is in good agreement with the model of silicon donor neutralization by formation of neutral silicon–hydrogen complexes.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. Von Behren ◽  
P. M. Fauchet ◽  
E. H. Chimowitz ◽  
C. T. Lira

AbstractHighly luminescent free-standing porous silicon thin films of excellent optical quality have been manufactured by using electrochemical etching and lift-off steps combined with supercritical drying. One to 50 μm thick free-standing layers made from highly (p+) and moderately (p) Boron doped single crystal silicon (c-Si) substrates have been produced with porosities (P) up to 95 %. The Fabry-Pérot fringes observed in the transmission and photoluminescence (PL) spectra are used to determine the refractive index. At the highest P the index of refraction is below 1.2 from the IR to 2 eV. The absorption coefficients follow a nearly exponential behavior in the energy range from 1.2 eV and 4 eV. The porosity corrected absorption spectra of free-standing films made from p type c-Si substrates are blue shifted with respect to those prepared from p+ substrates. For P > 70 % a blue shift is also observed in PL. At equal porosities the luminescence intensities of porous silicon films made from p+ and p type c-Si are different by one order of magnitude.


2009 ◽  
Vol 7 (5) ◽  
pp. 929-932
Author(s):  
A. Mzerd ◽  
A. Aboulfarah ◽  
A. Arbaoui ◽  
N. Hassanain ◽  
M. Abd-Lefdil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document