Performance of Pt-based Low Schottky Barrier Silicide Contacts on Weakly Doped Silicon

2003 ◽  
Vol 765 ◽  
Author(s):  
Guilhem Larrieu ◽  
Emmanuel Dubois ◽  
Xavier Wallart

AbstractOne of the grand challenge imposed by CMOS down-scaling is the optimisation of the source/drain (S/D) architecture, e.g., dopant activation above solid solubility, steep dopant profiling, low silicide specific contact resistivity. Recently, the concept of very low Schottky barrier S/D MOSFET has emerged as a possible alternative to conventional architecture using highly doped S/D and midgap silicide ohmic contacts. For p-MOSFETs integration, platinum silicide is an excellent candidate because of its very low barrier to holes. This enables the use of a weakly doped substrate that inherently solves the aforementioned challenges due to highly doped S/D. This paper proposes a detailed study of the platinum silicidation reaction obtained by rapid thermal annealing. The analysis is based on X-ray photoemission spectroscopy (XPS), transmission electron miscrocopy (TEM) and low temperature-dependent current-voltage measurements. Using XPS analysis, it is shown that: i) an initial silicide layer is formed at room temperature, ii) three stable phases Pt, Pt2Si, PtSi can not coexist providing that iii) the annealing ambience is strictly controlled to avoid the formation of a SiO2 barrier due to oxygen penetration into the platinum overlayer. Starting from an initial 15 nm thick Pt layer subsequently annealing at 300°C, TEM cross-sections reveal that homogeneous 32 nm PtSi layers with a uniform grain size distribution are formed. Finally, current-voltage characteristics have been measured on a special test structure that accounts for the lateral disposition of S/D regions in a typical MOSFET architecture. It consists in two back-to-back Schottky contacts separated by a narrow silicon gap both on bulk silicon and Silicon-On-Insulator (SOI) substrates. Based on temperature-dependent electrical measurements (Arrhenius plot), it is shown that field emission is involved in the current transport mechanism, in addition to thermionic emission. An excellent current drive performance of 220 μA per micron width has been obtained for a 45 nm silicon gap on a 10 nm thick SOI substrate.

1987 ◽  
Vol 91 ◽  
Author(s):  
M. Gurvitch ◽  
A. F. J. Levi ◽  
R. T. Tung ◽  
S. Nakahara

AbstractEpitaxial YSi2-x films have been fabricated. The smooth ∼430 Å thick silicide films on Si(111) substrates were characterized by a Rutherford backscattering minimum channeling yield, Xmin = 8%. The best previously reported result, Xmin = 26%, was achieved using a relatively exotic e-beam heating method. By contrast we formed YSi2-x using a straightforward furnace annealing technique. We used improved Si surface cleaning procedures, sputter-deposited Y films, and performed two-stage anneals in a vacuum of ∼ 10−8 torr. The results of our work establish YSi2-x as one of the best epitaxial silicides. We describe our preparation technique as well as the evidence for epitaxy. Electrical measurements (Schottky barrier, temperature dependent resistivity, Hall effect) are also presented. Low temperature resistivity of YSi2-x is found to obey simple T5 Bloch's law. Based on resistivity data, YSi2-x appears to have a Debye temperature of 310 K. According to Hall measurements, it is an electronic conductor with n = 2.7 × 1022 cm−3 and the mean free path of electrons is ∼ 87 Å at 4.2 K. We measure a Schottky barrier height of 0.36 eV between YSi2-x, and n-type Si.


1993 ◽  
Vol 300 ◽  
Author(s):  
Thomas Clausen ◽  
Otto Leistiko

ABSTRACTThe limiting transport processes for current flow across metal-semiconductor (MS) ohmic contacts to n- and p-type InP have been investigated for Au-based metallizations containing the doping elements Germanium and Zinc. It has been found that the Schottky barrier is lowered and in some cases vanishes during annealing. The current flow for an optimal ohmic contact is diffusion limited by a Fermi potential difference between the alloyed metallization and the bulk InP. For non-optimal ohmic contacts the current flow is also limited by thermionic emission across a low effective Schottky barrier.


2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


2014 ◽  
Vol 895 ◽  
pp. 439-443
Author(s):  
Tarriq Munir ◽  
Azlan Abdul Aziz ◽  
Mat Johar Abdullah ◽  
Mohd Fadzil Ain

This paper reports the temperature dependent DC and RF characteristics of n-GaN Schottky diode simulated using Atlas/Blaze developed by Silvaco. It was found that as the temperature increases from 300K to 900K the forward current decreases due to lowering of the Schottky barrier with an increase in series-resistance and ideality factor. These observations indicates that tunneling behavior dominates the current flow rather than thermionic emission. Furthermore, the breakdown voltage decreases in reverse bias and insertion loss for RF behavior increases with respect to temperature due to the increase in capacitance near diode junction.Keywords: Atlas/Blaze, Schottky barrier, series resistance, ideality factor, insertion loss.


2015 ◽  
Vol 650 ◽  
pp. 658-663 ◽  
Author(s):  
Zagarzusem Khurelbaatar ◽  
Min-Sung Kang ◽  
Kyu-Hwan Shim ◽  
Hyung-Joong Yun ◽  
Jouhan Lee ◽  
...  

2011 ◽  
Vol 1305 ◽  
Author(s):  
K. Sawano ◽  
Y. Hoshi ◽  
K. Kasahara ◽  
K. Yamane ◽  
K. Hamaya ◽  
...  

ABSTRACTWe demonstrate low-resistivity Ohmic contacts for n-Ge with ultra-shallow junction. Using the impurity δ-doping techniques with Ge homoepitaxy on Ge(111) below 400 ºC, we can achieve a very abrupt doping profile within a nanometer-scale width. By introducing the δ-doping to atomically controlled metal/Ge contacts, the current-voltage characteristics clearly show Ohmic conductions owing to the effective tunneling through the Schottky barrier. This approach is promising for a formation technology of ultra-shallow source/drain contacts for scaled Ge devices.


2013 ◽  
Vol 43 (1-2) ◽  
pp. 13-21 ◽  
Author(s):  
Y. Munikrishana Reddy ◽  
M. K. Nagaraj ◽  
M. Siva Pratap Reddy ◽  
Jung-Hee Lee ◽  
V. Rajagopal Reddy

Sign in / Sign up

Export Citation Format

Share Document