Current Transport in Low-Resistance Metal-InP Contacts

1993 ◽  
Vol 300 ◽  
Author(s):  
Thomas Clausen ◽  
Otto Leistiko

ABSTRACTThe limiting transport processes for current flow across metal-semiconductor (MS) ohmic contacts to n- and p-type InP have been investigated for Au-based metallizations containing the doping elements Germanium and Zinc. It has been found that the Schottky barrier is lowered and in some cases vanishes during annealing. The current flow for an optimal ohmic contact is diffusion limited by a Fermi potential difference between the alloyed metallization and the bulk InP. For non-optimal ohmic contacts the current flow is also limited by thermionic emission across a low effective Schottky barrier.

1996 ◽  
Vol 423 ◽  
Author(s):  
Tokuyuki Teraji ◽  
Shiro Hara ◽  
Hideyo Okushi ◽  
Koji Kajimura

AbstractWe formed titanium Ohmic contacts to n-type 6H-SiC epitaxial layer byreducing the Schottky barrier heights. The barrier heights were reduced enough toform the Ohmic contacts by releasing the Fermi level from pinning through makingatomically-flat surfaces. The current transport by thermionic emission wasdominant at the Ti/SiC interface. Since the Ti contacts were formed without postannealing,surfaces of the Ti electrodes were flat and homogeneous maintaining asdepositedstructures. Contact resistivity was (6±1)×10−3 Ω-cm2, which is comparableto that of the annealed Ni contact formed on the SiC epitaxial layer with the samecarrier concentration.


1999 ◽  
Vol 595 ◽  
Author(s):  
P. Ruterana ◽  
G. Nouet ◽  
Th. Kehagias ◽  
Ph. Komninou ◽  
Th. Karakostas ◽  
...  

AbstractWhen the stoichiometric TiN was deposited directly on GaN, we obtained columnar TiN grains of 5-20 nm section which cross the whole film thickness and are rotated mostly around the [111] axis. The conventional epitaxial relationship is obtained and no amorphous patches are observed at the interface. The deposition of TiN on Si doped GaN layers lead to the formation of an ohmic contact, whereas we obtain a rectifying contact on p type layers.


2008 ◽  
Vol 22 (14) ◽  
pp. 2309-2319 ◽  
Author(s):  
K. ERTURK ◽  
M. C. HACIISMAILOGLU ◽  
Y. BEKTORE ◽  
M. AHMETOGLU

The electrical characteristics of Cr / p – Si (100) Schottky barrier diodes have been measured in the temperature range of 100–300 K. The I-V analysis based on thermionic emission (TE) theory has revealed an abnormal decrease of apparent barrier height and increase of ideality factor at low temperature. The conventional Richardson plot exhibits non-linearity below 200 K with the linear portion corresponding to activation energy 0.304 eV and Richardson constant (A*) value of 5.41×10-3 Acm-2 K -2 is determined from the intercept at the ordinate of this experimental plot, which is much lower than the known value of 32 Acm-2 K -2 for p-type Si . It is demonstrated that these anomalies result due to the barrier height inhomogeneities prevailing at the metal-semiconductor interface. Hence, it has been concluded that the temperature dependence of the I-V characteristics of the Cr/p – Si Schottky barrier diode can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. Furthermore, the value of the Richardson constant found is much closer than that obtained without considering the inhomogeneous barrier heights.


1992 ◽  
Vol 281 ◽  
Author(s):  
C. Piskoti ◽  
B. Mykolajenko ◽  
M. Vaziri

ABSTRACTTo study the formation of ohmic contacts, several metals have been deposited on p-types ZnTe and ZnSe epitaxial layers. The metals were deposited on the layers either by simple evaporation or by electroplating. The current-voltage characteristics associated with each metal contact were measured. The preliminary results of these measurements indicate that electroplating is a better technique for making ohmic contact to these layers.


Author(s):  
Е.А. Архипова ◽  
Е.В. Демидов ◽  
М.Н. Дроздов ◽  
С.А. Краев ◽  
В.И. Шашкин ◽  
...  

Various methods of the formation of ohmic contacts to CVD diamond epitaxial structures with boron doped delta layers (δ-layers) are investigated. In the first approach, an additional thin, heavily doped layer was formed on the surface of the diamond film, to which the ohmic contact was formed. Then, the surface p+-layer between the contact pads was etched out, so the current flow in the structure occurred only through the buried δ-layer. In the second approach, doped diamond was selectively grown in contact windows under the mask of metal after preliminary etching the undoped diamond layer (cap) to the δ-layer. In this case, the heavily doped p+-layer will form a contact to the δ-layer. These approaches are differs by conditions of applicability, the complexity of manufacturing technology, the value of contact resistance. So they can be used to solve tasks in which different quality of contacts is required, such as the formation of transistor structures or test cells for measuring electrophysical characteristics.


2019 ◽  
Vol 963 ◽  
pp. 553-557
Author(s):  
Yaren Huang ◽  
Jonas Buettner ◽  
Benedikt Lechner ◽  
Gerhard Wachutka

The wide band gap of SiC semiconductor devices constitutes a serious challenge to build good Ohmic contacts on the surface of the p-type material. This is reflected in the numerical analysis of ”realistic” devices, where we have to cope with serious problems, such as a shifting threshold voltage, reduced forward conductivity, and no noticeable conductivity modulation by minority carrier injection from p+-emitters, in matching measured data with simulation results, as a consequence of the significant impact of non-ideal poor Ohmic contacts. In this work, we used a Schottky contact model together with a barrier tunneling model, instead of common ideal Ohmic contact model, to simulate the non-ideal Ohmic contact on SiC MPS diodes. Based on this approach, the I-V characteristics of real Ohmic contacts can be reproduced in high-fidelity simulations, providing us physical insight of the observed operational behavior.


2021 ◽  
Vol 1045 ◽  
pp. 186-193
Author(s):  
Meng Qian Xue ◽  
Cai Ping Wan ◽  
Nian Nian Ge ◽  
Heng Yu Xu

In order to understand the contribution of various metals in the formation of ohmic contacts, Ni/Al/Ti ohmic contacts on n-type 4H-SiC in terms of a different annealing temperature and Ti composition are investigated, which is more difficult to form than p-type ohmic contact. The formation of the Ni/Al/Ti metal alloy system is much more sensitive to metal composition than annealing conditions. With the increase of metal composition, the contact with a high Ti content yields a lower specific contact resistivity compared with the low Ti contact. The annealed surface morphology and phase resultants were examined by scanning electron microscopy (SEM) and atomic force microscope (AFM), respectively. With the increase of Ti components, the surface morphology of the samples becomes more uniform and smoother, while the surface roughness remains unchanged. It implies that Ti metal can not only reduce the ohmic resistance, but also protect the surface of the sample and maintain the roughness.


2003 ◽  
Vol 765 ◽  
Author(s):  
Guilhem Larrieu ◽  
Emmanuel Dubois ◽  
Xavier Wallart

AbstractOne of the grand challenge imposed by CMOS down-scaling is the optimisation of the source/drain (S/D) architecture, e.g., dopant activation above solid solubility, steep dopant profiling, low silicide specific contact resistivity. Recently, the concept of very low Schottky barrier S/D MOSFET has emerged as a possible alternative to conventional architecture using highly doped S/D and midgap silicide ohmic contacts. For p-MOSFETs integration, platinum silicide is an excellent candidate because of its very low barrier to holes. This enables the use of a weakly doped substrate that inherently solves the aforementioned challenges due to highly doped S/D. This paper proposes a detailed study of the platinum silicidation reaction obtained by rapid thermal annealing. The analysis is based on X-ray photoemission spectroscopy (XPS), transmission electron miscrocopy (TEM) and low temperature-dependent current-voltage measurements. Using XPS analysis, it is shown that: i) an initial silicide layer is formed at room temperature, ii) three stable phases Pt, Pt2Si, PtSi can not coexist providing that iii) the annealing ambience is strictly controlled to avoid the formation of a SiO2 barrier due to oxygen penetration into the platinum overlayer. Starting from an initial 15 nm thick Pt layer subsequently annealing at 300°C, TEM cross-sections reveal that homogeneous 32 nm PtSi layers with a uniform grain size distribution are formed. Finally, current-voltage characteristics have been measured on a special test structure that accounts for the lateral disposition of S/D regions in a typical MOSFET architecture. It consists in two back-to-back Schottky contacts separated by a narrow silicon gap both on bulk silicon and Silicon-On-Insulator (SOI) substrates. Based on temperature-dependent electrical measurements (Arrhenius plot), it is shown that field emission is involved in the current transport mechanism, in addition to thermionic emission. An excellent current drive performance of 220 μA per micron width has been obtained for a 45 nm silicon gap on a 10 nm thick SOI substrate.


1981 ◽  
Vol 5 ◽  
Author(s):  
J. Werner ◽  
W. Jantsch ◽  
K.H. Froehner ◽  
H.J. Queisser

ABSTRACTBy comparison of the capacitance and the conductivity of p–type Si bicrystals, we show quantitatively that current transport occurs through thermionic emission of holes across the potential barrier, which is caused by charged donors in the grain boundary. Starting from this finding, we propose a simple model which allows for the first time a spectroscopic determination of the grain boundary density of states from photocapacitance data. Results indicate the presence of band tails and additional mid-gap states.


Sign in / Sign up

Export Citation Format

Share Document