Temperature Dependent DC and RF Performance of n-GaN Schottky Diode: A Numerical Approach

2014 ◽  
Vol 895 ◽  
pp. 439-443
Author(s):  
Tarriq Munir ◽  
Azlan Abdul Aziz ◽  
Mat Johar Abdullah ◽  
Mohd Fadzil Ain

This paper reports the temperature dependent DC and RF characteristics of n-GaN Schottky diode simulated using Atlas/Blaze developed by Silvaco. It was found that as the temperature increases from 300K to 900K the forward current decreases due to lowering of the Schottky barrier with an increase in series-resistance and ideality factor. These observations indicates that tunneling behavior dominates the current flow rather than thermionic emission. Furthermore, the breakdown voltage decreases in reverse bias and insertion loss for RF behavior increases with respect to temperature due to the increase in capacitance near diode junction.Keywords: Atlas/Blaze, Schottky barrier, series resistance, ideality factor, insertion loss.

2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


2011 ◽  
Vol 1406 ◽  
Author(s):  
Cleber A. Amorim ◽  
Olivia M. Berengue ◽  
Luana Araújo ◽  
Edson R. Leite ◽  
Adenilson J. Chiquito

ABSTRACTIn this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.


2013 ◽  
Vol 313-314 ◽  
pp. 270-274
Author(s):  
M. Faisal ◽  
M. Asghar ◽  
Khalid Mahmood ◽  
Magnus Willander ◽  
O. Nur ◽  
...  

Temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were utilized to understand the transport mechanism of Pd Schottky diodes fabricated on Zn- and O-faces of ZnO. From I-V measurements, in accordance with the thermionic emission mechanism theory, it was found that the series resistance Rsand the ideality factor n were strongly temperature dependent that decreased with increasing temperature for both the faces (Zn and O-face) of ZnO revealing that the thermionic emission is not the dominant process. The barrier height øB(I-V)increased with increasing temperature for both faces. The measured values of ideality factor, barrier height and series resistance for Zn- and O-faces at room temperature were 4.4, 0.60 eV, 217 Ω and 2.8, 0.49 eV, 251 Ω respectively. The capacitance-voltage (C–V) measurements were used to determine the doping concentration Nd, the built-in-potential Vbi, and the barrier height øB(C-V). The doping concentration was found to be decreased with increasing depth. The barrier height øB(C-V)calculated for O-polar and Zn-polar faces decreases with increasing temperature. The values of barrier height øB(C-V)determined from C-V measurements were found higher than the values of barrier height øB(I-V). Keeping in view the calculated values of ideality factor, barrier height, and series resistance shows that O-polar face is qualitatively better than Zn-polar face.


2020 ◽  
Vol 5 (1) ◽  
pp. 30
Author(s):  
Ali Sadoun

In this work, we have presented a theoretical study of  Au/InSb/InP Schottky diode based on current-voltage (I-V) measurement in the temperature range ( 300 K- 425 K). Electrical parameters of Au/InSb/InP such as barrier height (Φb), ideality factor and series resistance have been calculated by employing the conventional (I-V), Norde, Cheung and Chattopadhyay methods. Measurements show that the Schottky barrier height (SBH), ideality factor and series resistance, RS for Au/InSb/InP Schottky diode in the temperature range (300 K–425 K)  are 0.602-0.69eV, 1.683-1.234 and 84.54-18.95 (Ω), respectively. These parameters were extracted using Atlas-Silvaco-Tcad logical.


2013 ◽  
Vol 858 ◽  
pp. 171-176
Author(s):  
Nathaporn Promros ◽  
Ryūhei Iwasaki ◽  
Suguru Funasaki ◽  
Kyohei Yamashita ◽  
Chen Li ◽  
...  

n-Type NC-FeSi2/p-type Si heterojunctions were successfully fabricated by PLD, and their forward current-voltage characteristics were analyzed on the basis of thermionic emission theory (TE) in the temperature range from 300 down to 77 K. With a decrease in the temperature, the ideality factor was increased while the zero-bias barrier height was decreased. The calculated values of ideality factor and barrier height were 3.07 and 0.63 eV at 300 K and 10.75 and 0.23 eV at 77 K. The large value of ideality factor indicated that a tunneling process contributes to the carrier transport mechanisms in the NC-FeSi2 films. The series resistance, which was estimated by Cheungs method, was strongly dependent on temperature. At 300 K, the value of series resistance was 12.44 Ω and it was dramatically enhanced to be 1.71× 105 Ω at 77 K.


2020 ◽  
Vol 34 (10) ◽  
pp. 2050095
Author(s):  
Durmuş Ali Aldemir

Zr/p-Si Schottky diode was fabricated by DC magnetic sputtering of Zr on p-Si. Zr rectifying contact gave a zero bias barrier height of 0.73 eV and an ideality factor of 1.33 by current–voltage measurement. The experimental zero bias barrier height was higher than the value predicted by metal-induced gap states (MIGSs) and electronegativity theory. The forward bias current was limited by high series resistance. The series resistance value of 9840 [Formula: see text] was determined from Cheung functions. High value of the series resistance was ascribed to low quality ohmic contact. In addition to Cheung functions, important contact parameters such as barrier height and series resistance were calculated by using modified Norde method. Re-evaluation of modified Norde functions was realized in the direction of the method proposed by Lien et al. [IEEE Trans. Electron Devices 31 (1984) 1502]. From the method, the series resistance and ideality factor values were found to be as 41.49 [Formula: see text] and 2.08, respectively. The capacitance–voltage characteristics of the diode were measured as a function of frequency. For a wide range of applied frequency, the contact parameters calculated from [Formula: see text]–[Formula: see text] curves did not exhibit frequency dependence. The barrier height value of 0.71 eV which was in close agreement with the value of zero bias barrier height was calculated from [Formula: see text]–[Formula: see text] plot at 1 MHz. The values of acceptor concentration obtained from [Formula: see text]–[Formula: see text] curves showed consistency with actual acceptor concentration of p-Si.


2003 ◽  
Vol 765 ◽  
Author(s):  
Guilhem Larrieu ◽  
Emmanuel Dubois ◽  
Xavier Wallart

AbstractOne of the grand challenge imposed by CMOS down-scaling is the optimisation of the source/drain (S/D) architecture, e.g., dopant activation above solid solubility, steep dopant profiling, low silicide specific contact resistivity. Recently, the concept of very low Schottky barrier S/D MOSFET has emerged as a possible alternative to conventional architecture using highly doped S/D and midgap silicide ohmic contacts. For p-MOSFETs integration, platinum silicide is an excellent candidate because of its very low barrier to holes. This enables the use of a weakly doped substrate that inherently solves the aforementioned challenges due to highly doped S/D. This paper proposes a detailed study of the platinum silicidation reaction obtained by rapid thermal annealing. The analysis is based on X-ray photoemission spectroscopy (XPS), transmission electron miscrocopy (TEM) and low temperature-dependent current-voltage measurements. Using XPS analysis, it is shown that: i) an initial silicide layer is formed at room temperature, ii) three stable phases Pt, Pt2Si, PtSi can not coexist providing that iii) the annealing ambience is strictly controlled to avoid the formation of a SiO2 barrier due to oxygen penetration into the platinum overlayer. Starting from an initial 15 nm thick Pt layer subsequently annealing at 300°C, TEM cross-sections reveal that homogeneous 32 nm PtSi layers with a uniform grain size distribution are formed. Finally, current-voltage characteristics have been measured on a special test structure that accounts for the lateral disposition of S/D regions in a typical MOSFET architecture. It consists in two back-to-back Schottky contacts separated by a narrow silicon gap both on bulk silicon and Silicon-On-Insulator (SOI) substrates. Based on temperature-dependent electrical measurements (Arrhenius plot), it is shown that field emission is involved in the current transport mechanism, in addition to thermionic emission. An excellent current drive performance of 220 μA per micron width has been obtained for a 45 nm silicon gap on a 10 nm thick SOI substrate.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


2015 ◽  
Vol 1120-1121 ◽  
pp. 435-439
Author(s):  
Nathaporn Promros ◽  
Dalin Prajakkan ◽  
Nantharat Hongsa ◽  
Nattanee Suthayanan ◽  
Phongsaphak Sittimart ◽  
...  

In this work, n-type β-FeSi2/intrinsic Si/p-type Si heterojunctions were prepared by facing-targets direct-current sputtering. We measured their current-voltage characteristics at low temperatures ranging from 300 K down to 50 K and investigated their ideality factor, saturation current and series resistance using thermionic emission theory and Cheung’s method. From thermionic emission theory, the ideality factor and saturation current density were calculated from the slope of the linear part from the forward lnJ-V and the straight line intercept of lnJ-V at zero voltage, respectively. When the temperature decreased from 300 K down to 50 K, the ideality factor increased from 1.12 to 11.13, whereas the saturation current density decreased from 2.09 × 10-6 A/cm2 to 1.06 × 10-9 A/cm2. Using Cheung’s method, we plotted the relations of dV/d(lnJ)-J and H(J)-J in order to estimate the series resistance from the slope of both plots. In addition, we estimated the ideality factor from a y-axis intercept of the dV/d(lnJ)-J plot. The series resistances from both plots were consistent with each other and increased with the decreasing temperature. The ideality factor estimated by Cheung’s method was in agreement with that obtained from estimation by thermionic emission theory.


2021 ◽  
Vol 2 (2) ◽  
pp. 58-66
Author(s):  
Abdelaaziz Benahmida ◽  
Noureddine Maouhoub ◽  
Hassan Sahsah

In this work, a numerical approach has been proposed to estimate the five single-diode circuit model physical parameters of photovoltaic generators from their experimental current-voltage characteristics. Linear least square method has been used to solve the system of three linear equations to express the shunt resistance, the saturation current and the photocurrent as a function of the series resistance and the ideality factor. Two key points have been used to solve the system of two nonlinear equations to extract values of series resistance and ideality factor. The advantage of the proposed method with respect of existing numerical techniques is that use only two key points of the experimental characteristic and need only two initial guesses and does not use any approximation. To evaluate the proposed method, three PV generators data have been used to compare the experimental and the theoretical curves. The application of the proposed method provides a good agreement with the experimental.


Sign in / Sign up

Export Citation Format

Share Document