From helical nanowires, nanocrosses to aligned micro-carbon fibers

2003 ◽  
Vol 776 ◽  
Author(s):  
Hai-Feng Zhang ◽  
Chong-Min Wang ◽  
James S. Young ◽  
James E. Coleman ◽  
Lai-Sheng Wang

AbstractWe successfully synthesized helical core-shell crystalline SiC/SiO2 nanowires, core-shell crystalline SiC/C nano-crosses and well-aligned core-shell crystalline SiC/C fibers by using a chemical vapor deposition technique. For the helical crystalline SiC/SiO2 nanowires, the SiC core typically has diameters of 10-40 nm with a helical periodicity of 40-80 nm and is covered by a uniform layer of 30-60 nm thick amorphous SiO2. Detailed structural characterizations suggested that the growth of this novel structure was induced by screw dislocations on the nanometer scale. For the core-shell nanocrosses, the crystalline SiC core typically has diameters of 10 to 40 nm and is covered by a uniform layer of 80-110 nm graphitic carbon. The wellaligned SiC/C fibers were shown to be formed by two sequential steps: catalytic SiC growth and graphitic carbon nano-sheets coating. The helical nanowires and core-shell nanocrosses may have potential applications in nano-electronics. The formation mechanism of the carbon fibers suggested that fabrication of field emission filament carbon nano-fibers may be realized by using the aligned crystalline nanowires as templates.

2010 ◽  
Vol 25 (7) ◽  
pp. 1272-1277 ◽  
Author(s):  
Jinjian Zheng ◽  
Zhiming Wu ◽  
Weihuang Yang ◽  
Shuping Li ◽  
Junyong Kang

Type II ZnO/ZnSe core/shell nanowire arrays were grown by a two-step chemical vapor deposition. The nanowire arrays with dense nanoislands on the surface are well aligned and normal to the substrate imaged by scanning electron microscopy. The core/shell structure of nanowires was identified by a high-resolution transmission electron microscopy. The structure and composition of the shell were confirmed to be wurtzite ZnSe by x-ray diffraction, Raman scattering and energy-dispersive x-ray spectroscopy. Moreover, an intense emission was observed at 1.89 eV smaller than the band gaps of core and shell materials by photoluminescence, indicating the achievement of the type II band alignment at the interface. This study is expected to contribute to the potential applications in novel photovoltaic devices.


2015 ◽  
Vol 3 (13) ◽  
pp. 7112-7120 ◽  
Author(s):  
Haoran Zhang ◽  
Xianying Qin ◽  
Junxiong Wu ◽  
Yan-Bing He ◽  
Hongda Du ◽  
...  

Core–shell silicon/carbon (Si/C) fibers with an internal honeycomb-like carbon framework are prepared based on the coaxial electrospinning technique.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1415
Author(s):  
Zaira Jocelyn Hernández Simón ◽  
Jose Alberto Luna López ◽  
Alvaro David Hernández de la Luz ◽  
Sergio Alfonso Pérez García ◽  
Alfredo Benítez Lara ◽  
...  

In the present work, non-stoichiometric silicon oxide films (SiOx) deposited using a hot filament chemical vapor deposition technique at short time and simple parameters of depositions are reported. This is motivated by the numerous potential applications of SiOx films in areas such as optoelectronics. SiOx films were characterized with different spectroscopic techniques. The deposited films have interesting characteristics such as the presence of silicon nanoclusters without applying thermal annealing, in addition to a strong photoluminescence after applying thermal annealing in the vicinity of 1.5 eV, which may be attributed to the presence of small, oxidized silicon grains (less than 2 nm) or silicon nanocrystals (Si-nc). An interesting correlation was found between oxygen content, the presence of hydrogen, and the formation of defects in the material, with parameters such as the band gap and the Urbach energies. This correlation is interesting in the development of band gap engineering for this material for applications in photonic devices.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
J. A. García-Merino ◽  
E. Feria-Reyes ◽  
C. Mercado-Zúñiga ◽  
M. Trejo-Valdez ◽  
C. R. Torres-San Miguel ◽  
...  

Two-input binary exclusive-or logic operations were presented by the assistance of multiwall carbon nanotubes in a double-stage optical Kerr gate scheme with two control beams. The samples were prepared by the aerosol pyrolysis method and decorated by platinum nanoparticles using a chemical vapor deposition technique. The nanostructures were suspended in ethanol to obtain carbon/metal nanoinks with different concentrations and then randomly distributed networks integrated in thin film form were fabricated. Polarization-selectable functions were obtained in the double-stage scheme by using nanosecond third-order nonlinear optical effects at 532 nm wavelength exhibited by the samples. Potential applications for ultrafast identification and encryption of nonlinear optical signals were discussed.


2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-885-Pr3-892 ◽  
Author(s):  
N. Popovska ◽  
S. Schmidt ◽  
E. Edelmann ◽  
V. K. Wunder ◽  
H. Gerhard ◽  
...  

2002 ◽  
Vol 722 ◽  
Author(s):  
Ram W. Sabnis ◽  
Mary J. Spencer ◽  
Douglas J. Guerrero

AbstractNovel organic, polymeric materials and processes of depositing thin films on electronics substrates by chemical vapor deposition (CVD) have been developed and the lithographic behavior of photoresist coated over these CVD films at deep ultraviolet (DUV) wavelength has been evaluated. The specific monomers synthesized for DUV applications include [2.2](1,4)- naphthalenophane, [2.2](9,10)-anthracenophane and their derivatives which showed remarkable film uniformity on flat wafers and conformality over structured topography wafers, upon polymerization by CVD. The chemical, physical and optical properties of the deposited films have been characterized by measuring parameters such as thickness uniformity, solubility, conformality, adhesion to semiconductor substrates, ultraviolet-visible spectra, optical density, optical constants, defectivity, and resist compatibility. Scanning electron microscope (SEM) photos of cross-sectioned patterned wafers showed verticle profiles with no footing, standing waves or undercut. Resist profiles down to 0.10 νm dense lines and 0.09 νm isolated lines were achieved in initial tests. CVD coatings generated 96-100% conformal films, which is a substantial improvement over commercial spin-on polymeric systems. The light absorbing layers have high optical density at 248 nm and are therefore capable materials for DUV lithography applications. CVD is a potentially useful technology to extend lithography for sub-0.15 νm devices. These films have potential applications in microelectronics, optoelectronics and photonics.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 237
Author(s):  
M. Abul Hossion ◽  
B. M. Arora

Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor deposition technique for possible application in photonics devices. To investigate the effect of substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films. The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable for using as a window layer in a solar cell. These films have potential uses in making photodiode and photosensing devices.


Sign in / Sign up

Export Citation Format

Share Document