Microstructure and Mechanical Properties of Nanolayered TiN/Cu Thin Films

2003 ◽  
Vol 778 ◽  
Author(s):  
Y.Y. Tse ◽  
G. Abadias ◽  
A. Michel ◽  
C. Tromas ◽  
M. Jaouen

AbstractStructural and mechanical properties of nanoscale TiN/Cu multilayers grown by dual ion beam sputtering with bilayer periods (A) ranging from 2.5 to 50 nm were studied. Both low-angle and high-angle X-ray diffraction (XRD) experiments have been employed to globally characterize the multilayers structure. The microstructure of the multilayers has been scrutinized by high resolution transmission electron microscopy (HRTEM). The effects of interface and bilayer thickness on hardness were investigated by depth-sensing nanoindentation technique. A small hardness increase with decreasing periodicity of the multilayers has been observed. The relationship between the hc/T ratio (hc is the contact depth and T is the total film thickness) and the hardness is established. The correlation between the microstructure and hardness is discussed.

2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


1999 ◽  
Author(s):  
Salvatore Scaglione ◽  
Francesca Sarto ◽  
Raffaele Pepe ◽  
Antonella Rizzo ◽  
Marco Alvisi

2004 ◽  
Vol 19 (12) ◽  
pp. 3521-3525 ◽  
Author(s):  
Sheng Han ◽  
Hong-Ying Chen ◽  
Chih-Hsuan Cheng ◽  
Jian-Hong Lin ◽  
Han C. Shih

Aluminum nitride films were deposited by varying the voltages of argon ion beams from 400 to 1200 V in dual ion beam sputtering. The crystal structure, microstructure, and elemental distributions of the aluminum nitride films were analyzed by x-ray diffraction, field emission scanning electron microscopy, and secondary ion mass spectroscopy, respectively. The aluminum nitride films exhibited the 〈002〉 preferred orientation at an optimal ion beam voltage of 800 V. The orientation changed to a mixture of {100} and {002} planes above 800 V, accounting for radiation damage. The thickness of the film increases with increasing ion beam voltage, reaching a steady state value of 210 nm at an ion beam voltage of 1200 V. Under optimal condition (800 V), the c-axis orientation of the aluminum nitride 〈002〉 film was obtained with a dense and high-quality crystal structure.


2007 ◽  
Vol 336-338 ◽  
pp. 1788-1790
Author(s):  
Yu Ju Chen ◽  
Wen Cheng J. Wei

Ion-beam sputtering deposition is a physical deposited method which uses accelerated ionbeam to sputter oxide or metal targets, and deposits atoms on substrate. Thin films of yttrium-stabilized zirconia (YSZ) were deposited on Si (100) wafer and NiO/YSZ plate. Scanning electron microscopy and transmission electron microscopy with EDS were employed to study the microstructural and chemically stoichiometric results of the films and the crystal growth process by various heat treatments. X-ray diffraction was also used to analysis crystalline phase of the YSZ films. The influence of different targets, substrates deposited efficiency and the properties of the film will be presented and discussed.


1996 ◽  
Vol 441 ◽  
Author(s):  
Tai D. Nguyen ◽  
Alison Chaiken ◽  
Troy W. Barbee

AbstractMicrostructural development of Fe and Cu in Cu/Fe multilayers of layer thickness 1.5–10 nm prepared on Si, Ge, and MgO substrates by ion beam sputtering has been studied using x-ray diffraction and cross-sectional transmission electron microscopy (TEM). High-angle x-ray results show an fcc Cu structure and a distorted bcc structure in the Fe layers at 5 nm-layer-thickness and smaller, and bcc Fe (110) and fcc Cu (111) peaks in the 10 nm-layer-thickness samples. Lowangle x-ray diffraction indicates that the layers in the samples grown on MgO substrates have a more uniform and smooth layered structure than the multilayers grown on Si and Ge substrates, which results from larger grains in the MgO substrate samples for the same layer thickness. Relationships among growth, microstructure, and interfaces with layer thickness are discussed.


2010 ◽  
Vol 97-101 ◽  
pp. 1243-1247 ◽  
Author(s):  
Bo Hong ◽  
Xue Mei Wu ◽  
Lan Jian Zhuge ◽  
Zhao Feng Wu ◽  
Fei Zhou

Amorphous silicon carbide nitride (SiCN) films have been deposited in a dual ion beam sputtering deposition (DIBSD) using a SiC target. Films with various compositions were obtained by changing the nitrogen and argon gas ratio in the assisted ion source. Mechanical properties of the SiCN films were evaluated by Nano-indentation in N2 ambient. Surface morphology of the films was characterized by an Atomic Force Microscope (AFM). The microstructure and chemical bonding correlating with behavior of the films were studied by a Fourier transform infrared spectroscopy (FTIR) and a laser Raman spectroscopy. The results show that N2 proportion in the assisted ion source has a great effect on the structure and properties of the films and the mechanism was discussed in brief.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
C. G. Jin ◽  
X. M. Wu ◽  
L. J. Zhuge

Silicon carbide (SiC) films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV) was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.


Sign in / Sign up

Export Citation Format

Share Document