Ferroelectric Domain Structure and Local Piezoelectric Properties of Sol-Gel Derived Pb(Zr1-xTix)O3 Films

2003 ◽  
Vol 784 ◽  
Author(s):  
I. K. Bdikin ◽  
V. V. Shvartsman ◽  
A. L. Kholkin ◽  
Seung-Hyun Kim

ABSTRACTHigh-resolution domain studies are performed on Pb(Zr1-xTix)O3 (PZT) films of different thicknesses and compositions (x=0.30, 0.48, and 0.70) by piezoresponse force microscopy (PFM). Depending on the composition, the orientation of the films is varied from purely (111) (related to the orientation of Pt bottom electrode) to a more random texture. Statistical processing of the obtained domain images is used to analyze the correlation between the composition of the films and their nanoscale piezoelectric properties. It is shown that the virgin (unpoled) films possess large piezoelectric activity comparable to that after local poling (self-polarization effect). This corresponds to a clear predominance of the domains with polarization oriented from the free surface of the film to the bottom electrode. Both the average piezoelectric signal and half-width of the piezoelectric histograms depend on the composition and thickness of the films. The largest local piezoelectric coefficient and the broadest distribution are found for tetragonal (x=0.70) films with almost pure (111) texture. The results are discussed in terms of texture and PFM instrumentation effects on local piezoelectric measurements.

2007 ◽  
Vol 1034 ◽  
Author(s):  
Serguei A. Chevtchenko ◽  
Francisco A. Agra ◽  
Jinqiao Xie ◽  
Hadis Morkoç

AbstractWe provide a comparative study of the piezoresponse in thin Pb(ZrxTi1−x)O3 (PZT) films deposited onto GaN/sapphire and Pt/Ti/SiO2/Si substrates using the sol-gel process. The effective piezoelectric coefficient was measured by Piezoresponse Force Microscopy. The resulting effective piezoelectric coefficient obtained for PZT(∼180 nm)/GaN/sapphire structure is 16.7 ± 3.4 pm/V and for PZT(∼180 nm)/Pt/Ti/SiO2/Si structure is 7.8 ± 0.8 pm/V. We also discuss the substrate clamping effect of both structures and explain the relatively stronger piezoresponse of PZT on GaN by different orientation of films formed on the two types of substrates. In this investigation, the PZT thin films crystallized with preferred (100) and (110) orientations on platinum and GaN, respectively. The phase mode of the Piezoresponse Force Microscopy was used to demonstrate remanent polarization in PZT/GaN/sapphire structure.


2006 ◽  
Vol 966 ◽  
Author(s):  
Dmitry Kiselev ◽  
Igor Bdikin ◽  
Alena Movchikova ◽  
Andrei Kholkin ◽  
Gunnar Suchaneck ◽  
...  

ABSTRACTPoled ferroelectric lead zirconate titanate (PZT) films comprising a (111) texture on (100)Si/SiO2/(111)Pt substrates were investigated by piezoresponse force microscopy (PFM). Depending on the film thickness, the crystallite orientation varies from purely (111) (related to the Pt bottom electrode orientation) to a more random texture. By PFM, 90° domains with a width of 50 nm were obtained in an individual grain Pb(Pb0.10Zr0.21Ti0.69)O3 − PPZT (10/21/69). It was shown that the virgin (unpoled) films possess large piezoelectric activity comparable to that after local poling (self-polarization effect). This corresponds to a clear predominance of the domains with a polarization oriented from the bottom electrode to the free surface of the film.


2013 ◽  
Vol 52 (40) ◽  
pp. 14328-14334 ◽  
Author(s):  
Juan Ramos-Cano ◽  
Mario Miki-Yoshida ◽  
André Marino Gonçalves ◽  
José Antônio Eiras ◽  
Jesús González-Hernández ◽  
...  

2012 ◽  
Vol 1427 ◽  
Author(s):  
Kanu priya Sharma ◽  
Thomas Oseroff ◽  
Leda Lunardi

ABSTRACTCrack free lead zirconate titanate (PZT) films for piezoelectric based MEMS devices have been prepared by a multiple coating sol gel process on platinized silicon (100) substrates. Rapid thermal annealing and Conventional furnace annealing were used for densification and crystallization of the amorphous PZT films. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe surface film morphology and grain growth. The phase content of the films was analyzed using X-ray diffraction. The role of intermetallics formed during the heat treatment in the growth of different orientations has also been observed. Film aging critical for device performance has been observed and methods to revert aging effects have been examined and discussed.


2020 ◽  
Vol 31 (24) ◽  
pp. 22833-22843
Author(s):  
Nguyen Quoc Khánh ◽  
János Radó ◽  
Zsolt Endre Horváth ◽  
Saeedeh Soleimani ◽  
Binderiya Oyunbolor ◽  
...  

AbstractSubstrate bias was applied for AlN deposition on rolled Ni sheet during pulse DC reactive sputtering to overcome the difficulty caused by thermal expansion mismatch between Ni substrate and AlN upon substrate heating. It was shown by Piezoresponse Force Microscopy (PFM) that the quality of the deposited AlN layer depends strongly on the negative substrate bias, i.e., the energy transferred via the bombardment of the accelerated positive ions on the sample. As the negative substrate bias becomes larger, the so formed layer shows higher piezoresponse, and better homogeneity. A Z-cut LiNbO3 single crystal was used as a reference to correct the PFM signals. The highest average d33 piezoelectric coefficient value, achieved at − 100 V substrate bias, is 3.4 pm/V indicating the feasibility of AlN deposition on rolled Ni substrate for vibration energy harvesting applications.


2009 ◽  
Vol 95 (20) ◽  
pp. 202901 ◽  
Author(s):  
F. Johann ◽  
T. Jungk ◽  
S. Lisinski ◽  
Á. Hoffmann ◽  
L. Ratke ◽  
...  

Author(s):  
Hana Uršič ◽  
Uroš Prah

In recent years, ferroelectric/piezoelectric polycrystalline bulks and thick films have been extensively studied for different applications, such as sensors, actuators, transducers and caloric devices. In the majority of these applications, the electric field is applied to the working element in order to induce an electromechanical response, which is a complex phenomenon with several origins. Among them is the field-induced movement of domain walls, which is nowadays extensively studied using piezoresponse force microscopy (PFM), a technique derived from atomic force microscopy. PFM is based on the detection of the local converse piezoelectric effect in the sample; it is one of the most frequently applied methods for the characterization of the ferroelectric domain structure due to the simplicity of the sample preparation, its non-destructive nature and its relatively high imaging resolution. In this review, we focus on the PFM analysis of ferroelectric bulk ceramics and thick films. The core of the paper is divided into four sections: (i) introduction; (ii) the preparation of the samples prior to the PFM investigation; (iii) this is followed by reviews of the domain structures in polycrystalline bulks; and (iv) thick films.


1998 ◽  
Vol 541 ◽  
Author(s):  
A. L. Kholkin ◽  
K. G. Brooks ◽  
D. V. Taylor ◽  
N. Setter ◽  
A. Safari

AbstractPiezoelectric properties of Pb(Zr,Ti)O3 (PZT) and PbMg1/3Nb2/3O3-PbTiO3 (PMN-PT) films are investigated by interferometric technique combined with conventional dielectric and polarization measurements. It is shown that the piezoelectric d33 coefficient of both materials can be expressed based on their polarization and dielectric constant values using an equation for the electrostriction biased by the polarization. The obtained values of electrostriction coefficients are nearly field-independent and significantly smaller than in bulk materials of the same composition. Polarization offset is observed in PZT films subjected to bipolar fatigue, UV illumination and poling at high temperature, and is explained based on the pinning of ferroelectric domains in preferred orientations. The piezoelectric properties of rhombohedral PZT films are found to depend on their texture. The highest piezoelectric coefficient is observed in (100) oriented films, which have smaller polarization as compared to films having (111) preferred orientation. This difference is explained by the different values of electrostriction coefficients in materials with different textures.


2013 ◽  
Vol 1556 ◽  
Author(s):  
Dmitry A. Kiselev ◽  
Mikhail D. Malinkovich ◽  
Yuriy N. Parkhomenko ◽  
Alexandr V. Solnyshkin ◽  
Alexey A. Bogomolov ◽  
...  

ABSTRACTIn this work, we report on local ferroelectric and piezoelectric properties of nanostructured polymer composites P(VDF-TrFE)+x(Ba,Pb)(Zr,Ti)O3 (x = 0 - 50 %). High-resolution imaging of ferroelectric domains, local polarization switching, and polarization relaxation dynamics were studied by piezoresponse force microscopy. In particular, we found that (Ba,Pb)(Zr,Ti)O3 inclusions usually show a strong unipolar piezoresponse signal, as compared to the polymer matrix. By scanning under high dc voltage the films can be polarized uniformly under both positive and negative electric fields. Stability of the polarized state is discussed.


Sign in / Sign up

Export Citation Format

Share Document