Intermetallic Formation in PZT for MEMS Structures

2012 ◽  
Vol 1427 ◽  
Author(s):  
Kanu priya Sharma ◽  
Thomas Oseroff ◽  
Leda Lunardi

ABSTRACTCrack free lead zirconate titanate (PZT) films for piezoelectric based MEMS devices have been prepared by a multiple coating sol gel process on platinized silicon (100) substrates. Rapid thermal annealing and Conventional furnace annealing were used for densification and crystallization of the amorphous PZT films. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe surface film morphology and grain growth. The phase content of the films was analyzed using X-ray diffraction. The role of intermetallics formed during the heat treatment in the growth of different orientations has also been observed. Film aging critical for device performance has been observed and methods to revert aging effects have been examined and discussed.

2016 ◽  
Vol 10 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Ali Mirzaei ◽  
Maryam Bonyani ◽  
Shahab Torkian

In this study ferroelectric lead zirconate titanate PZT (0.523/0.477) nanocrystalline powders have been successfully synthesized by an alkoxide based sol-gel process. Crystallinity of the prepared ceramic powders was studied using X-ray diffractometer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were performed to study morphology of the calcined powders. EDX analysis was employed to demonstrate purity of the synthesized powders. Surface nature of the powders was studied by using FTIR technique. TGA/DTA analysis was employed to study thermal behaviour of powders. Spectroscopic techniques (FTIR and XRD) results indicated that the as-dried amorphous powders can be completely crystallized at 600?C. In order to investigate the densification behaviour of the calcined powders, the crystalline PZT powders were pelletized into discs and sintered at various temperatures from 900?C to 1150?C, with a heating rate of 10?C/min and holding time of 2 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured surface of the samples using SEM. It was found that the PZT ceramics calcined at 600?C for 4 h then sintered at 1050?C for 2 h had maximal density (98% of the theoretically density).


1999 ◽  
Vol 596 ◽  
Author(s):  
Zhan-jie Wang ◽  
Ryutaro Maeda ◽  
Kaoru Kikuchi

AbstractLead zirconate titanate (PZT) thin films were fabricated by a three-step heat-treatment process which involves the addition of -10, 0 and 10 mol% excess Pb to the starting solution and spin coating onto Pt/Ti/SiO2/Si substrates. Crystalline phases as well as preferred orientations in PZT films were investigated by X-ray diffraction analysis (XRD). The microstructure and composition of the films were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), respectively. The well-crystallized perovskite phase and the (100) preferred orientation were obtained by adding 10% excess Pb to the starting solution. It was found that PZT films to which 10% excess Pb was added had better electric properties. The remanent polarization and the coercive field of this film were 34.8 μC/cm2 and 41.7 kV/cm, while the dielectric constant and loss values measured at 1 kHz were approximately 1600 and 0.04, respectively. Dielectric and ferroelectric properties were correlated to the microstructure of the films.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


1994 ◽  
Vol 360 ◽  
Author(s):  
D.A. Barrow ◽  
T.E. Petroff ◽  
M. Sayer

AbstractLead zirconate titanate (PZT) films of up to 60 μm in thickness have been fabricated on a wide variety of substrates using a new sol gel process. The dielectric properties (∈ = 900), ferroelectric (Ec = 16 kV/cm and Pr = 35 μC/cm 2) and piezoelectric properties are comparable to bulk values. The characteristic Curie point of these films is at 420 °C. Piezoelectric actuators have been developed by depositing thick PZT films on both planar and coaxial substrates. Stainless steel cantilevers and optical fibres coated with a PZT film exhibit flexure mode resonant vibrations observable with the naked eye. A low frequency in-line fibre optic modulator has been developed using a PZT coated optical fibre. The high frequency resonance of a 60 μm film on a aluminum substrate has been observed.


1992 ◽  
Vol 271 ◽  
Author(s):  
S. D. Ramamurthi ◽  
S. L. Swartz ◽  
K. R. Marken ◽  
J. R. Busch ◽  
V. E. Wood Battelle

ABSTRACTLead-zirconate-titanate, Pb(Zr0.53Ti0.47)O3, films were produced by the sol-gel method from alkoxide and acetate precursors in a 2-methoxyethanol solvent system. The PZT films were deposited on platinized silicon and single-crystal SrTiO3 substrates for electrical and optical characterization, respectively. The processing parameters, especially excess PbO content and annealing conditions, were shown to have a significant effects on the properties of PZT films. Epitaxial PZT films deposited on SrTiO3 waveguided over 10 mm distances with propagation losses as low as 5.9 dB/cm at 783 nm and a linear electro-optic effect was also demonstrated.


1991 ◽  
Vol 35 (A) ◽  
pp. 159-167 ◽  
Author(s):  
Raymond P. Goehner ◽  
Michael O. Eatough ◽  
Bruce A. Tuttle ◽  
Thomas J. Headley

AbstractThe use of grazing incidence parallel beam x-ray diffraction (GIXRD) in the characterization of lead zirconate titanate (PZT) films is described. This tool has enabled us to depth profile the films. The transmission electron microscopy (TEM) results obtained from a cross section of one film are shown to compliment the GIXRD results. The variation in crystallographic structure versus depth in the film was the primary focus of this study.The insults from three PZT films having Zr/Ti ratios of 25/75, 48/52, and 75/25 are given. TEM results are reported from the sample with a Zr/Ti ratio of 48/52.


1991 ◽  
Vol 224 ◽  
Author(s):  
Zheng Wu ◽  
Roberto Pascual ◽  
C.V.R. Vasant Kumar ◽  
David Amd ◽  
Michael Sayer

AbstractThe preparation of ferroelectric lead zirconate titanate (PZT) thin films by rapid thermal processing (RTP) is reported. The films were deposited by chemical sol gel and physical sputter techniques. The heating rate of RTP was found to have significant influence on the crystallization behavior. Faster heating rates lead to lowering of the crystallization temperature and reduction of grain size. PZT films were obtained with dielectric constants ~ 1000, remanent polarizations between 20 and 30μC/cm2, coercive fields 20 to 60kV/cm, and no significant fatigue for 109 to 1010 stressing cycles.


2000 ◽  
Vol 657 ◽  
Author(s):  
L.-P. Wang ◽  
R. Wolf ◽  
Q. Zhou ◽  
S. Trolier-McKinstry ◽  
R. J. Davis

ABSTRACTLead zirconate titanate (PZT) films are very attractive for microelectromechanical systems (MEMS) applications because of their high piezoelectric coefficients and good electromechanical coupling. In this work, wet-etch patterning of sol-gel PZT films for MEMS applications, typically with film thicknesses ranging from 2 to 10 microns, was studied. A two- step wet-etch process was developed. In the first step, 10:1 buffered HF is used to remove the majority of the film at room temperature. Then a solution of 2HCl:H2O at 45°C is used to remove metal-fluoride residues remaining from the first step. This enabled successful patterning of PZT films up to 8 microns thick. A high etch rate (0.13μm/min), high selectivity with respect to photoresist, and limited undercutting (2:1 lateral:thickness) were obtained. The processed PZT films have a relative permittivity of 1000, dielectric loss of 1.6%, remanent polarization (Pr) of 24μC/cm2, and coercive field (Ec) of 42.1kV/cm, all similar to those of unpatterned films of the same thickness.


Sign in / Sign up

Export Citation Format

Share Document