Electron micro-probe analysis and cathodoluminescence spectroscopy of rare earth - implanted GaN

2003 ◽  
Vol 798 ◽  
Author(s):  
S. Dalmasso ◽  
R. W. Martin ◽  
P. R. Edwards ◽  
V. Katchkanov ◽  
K. P. O'Donnell ◽  
...  

ABSTRACTGaN films doped with rare earth (RE) elements have attracted considerable attention due to the unique optical luminescent properties of the RE intra 4ƒ(n)-shell electron transitions which lead to sharp blue (Tm), green (Er) and red (Eu) emissions. This paper presents an overview of investigations of GaN films implanted with each of these ions using a combination of electron-beam and optical techniques. The ion implantations were performed under a wide range of conditions, covering variations in fluences, energies and temperatures and followed by different high-temperature annealing steps. The resulting RE:GaN films were analysed using an electron probe micro-analyser modified to allow cathodoluminescence (CL) spectroscopy. Elemental microanalysis data obtained by wavelength dispersive X-ray analysis (WDX) is correlated with simultaneously collected room temperature CL spectra.WDX allows the quantification of the RE elemental concentrations in GaN down to ∼ 0.03 at. % in very thin layers (∼ 100 nm deep). Furthermore, by varying the incident electron beam energy, details concerning the depth profile of RE implants can be determined. The effects of both implantation conditions and rapid thermal annealing on the depth profile and on the luminescence properties are reported. CL measurements performed on annealed samples reveal sharp visible and near IR emission lines characteristic of the RE3+ intra-4ƒ(n) atomic shell transitions.

Author(s):  
Vicente Vargas ◽  
Anastasiya Sedova ◽  
Jesús Uriel Balderas ◽  
S. Carmona-Tellez ◽  
Iván Merlin ◽  
...  

2002 ◽  
Vol 743 ◽  
Author(s):  
R. W. Martin ◽  
S. Dalmasso ◽  
K. P. O'Donnell ◽  
Y. Nakanishi ◽  
A. Wakahara ◽  
...  

ABSTRACTRare-earth doped GaN structures offer potential for optical devices emitting in the visible region [1,2]. We describe a study of MOVPE grown GaN-on-sapphire epilayers implanted with Europium ions, producing characteristic red emission lines between 540 and 680 nm due to intra-4f(n) electron transitions. As-implanted and subsequently annealed samples are investigated using a combination of wavelength dispersive x-ray analysis (WDX), electron microscopy, cathodoluminescence (CL) and photoluminescence (PL). WDX is shown to be a powerful technique for quantifying rare-earth concentrations in GaN, with varying electron beam voltages allowing a degree of depth profiling, further enhanced by the simultaneous collection of room temperature luminescence (CL) from the analysed region [3]. The intensities of the sharp lines observed in the luminescence spectrum are compared to the doping density (between 1014 – 1015 cm−2) and the Eu content measured by WDX, using a Eu-doped glass standard. Differences observed in the luminescence spectra produced by laser and electron beam excitation will be discussed along with the importance of the annealing conditions, which “heal” defects visible in the electron micrographs.


2017 ◽  
Vol 43 (5) ◽  
pp. 515-532 ◽  
Author(s):  
V. N. Babichev ◽  
A. V. Dem’yanov ◽  
N. A. Dyatko ◽  
A. F. Pal’ ◽  
A. N. Starostin ◽  
...  

Author(s):  
Dominik Dorosz ◽  
Jacek Zmojda ◽  
Marcin Kochanowicz

Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Jae-Young Jung ◽  
Soung-Soo Yi ◽  
Dong-Hyun Hwang ◽  
Chang-Sik Son

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.


2005 ◽  
Vol 5 (9) ◽  
pp. 1519-1531 ◽  
Author(s):  
Hongwei Song ◽  
Lixin Yu ◽  
LinMei Yang ◽  
Shaozhe Lu

2016 ◽  
Vol 442 ◽  
pp. 22-28 ◽  
Author(s):  
Alexandre Joërg ◽  
Fabien Lemarchand ◽  
Mengxue Zhang ◽  
Michel Lequime ◽  
Julien Lumeau

2011 ◽  
Vol 24 (6) ◽  
pp. 887-895 ◽  
Author(s):  
Miriam Uemi ◽  
Graziella E. Ronsein ◽  
Fernanda M. Prado ◽  
Flávia D. Motta ◽  
Sayuri Miyamoto ◽  
...  

2011 ◽  
Vol 322 ◽  
pp. 337-340
Author(s):  
Lian Cai Du

A tripodal ligand, 2-acetylpyridine-tris(2-aminoethyl)amine (L), pyridine-N-oxide and their ternary complexes with rare earth nitrates have been synthesized. These new complexes with the general formula of Ln·L·PyNO·(NO3)3·nH2O (where Ln = La, Nd, Tb, Pr, Eu, n = 1~3 ) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductivity. All the complexes are stable in air. The results show that the lanthanide ions in each complex are coordinated by nitrogen atoms of the ligand, oxygen atoms of PyNO and the nitrates. The fluorescent properties of the Eu(III) and Tb(III) complexes in solid were investigated.


Sign in / Sign up

Export Citation Format

Share Document