Flexible electronics for space applications

2004 ◽  
Vol 814 ◽  
Author(s):  
Erik Brandon ◽  
William West ◽  
Lisong Zhou ◽  
Tom Jackson ◽  
Greg Theriot ◽  
...  

AbstractNASA is currently developing a host of deployable structures for the exploration of space. These include balloons, solar sails, space-borne telescopes and membrane-based synthetic aperture radar. Each of these applications is driven by the need for a thin, low mass, large area structure (e.g., polymer-based) which could not be implemented using conventional engineering materials such as metals and alloys. In each case, there is also the need to integrate sensing and control electronics within the structure. However, conventional silicon-based electronics are difficult to integrate with such large, thin structures, due to a variety of concerns including mass, reliability and manufacturing issues. Flexible electronics, particularly thin film transistors (TFTs), are a potentially key enabling technology that may allow the integration of a wide range of sensors and actuators into these types of structures. There are numerous challenges, however, regarding the survivability of such devices during stowage and deployment of the structure, as well as during operation in the harsh environments of space. We have fabricated TFTs on polyimide substrates, and are investigating the durability of these devices with respect to relevant space environments. We are also developing flexible sensor technologies for the integration of distributed sensor networks on large area structures.

Author(s):  
Nicolas Vayas Tobar ◽  
Pavolas N. Christidis ◽  
Nathaniel J. O'Connor ◽  
Michal Talmor ◽  
Jamal Seyed-Yagoobi

As modern day electronics develop, electronic devices become smaller, more powerful, and are expected to operate in more diverse configurations. However, the thermal control systems that help these devices maintain stable operation must advance as well to meet the demands. One such demand is the advent of flexible electronics for wearable technology, medical applications, and biology-inspired mechanisms. This paper presents the design and performance characteristics of a proof of concept for a flexible Electrohydrodynamic (EHD) pump, based on EHD conduction pumping technology in macro- and meso-scales. Unlike mechanical pumps, EHD conduction pumps have no moving parts, can be easily adjusted to the micro-scale, and have been shown to generate and control the flow of refrigerants for electronics cooling applications. However, these pumping devices have only been previously tested in rigid configurations unsuitable for use with flexible electronics. In this work, for the first time, the net flow generated by flexible EHD conduction pumps is measured on a flat-plane and in various bending configurations. In this behavioral characteristics study, the results show that the flexible EHD conduction pumps are capable of generating significant flow velocities in all size scales considered in this study, with and without bending. This study also proves the viability of screen printing as a manufacturing method for these pumps. EHD conduction pumping technology shows potential for use in a wide range of terrestrial and space applications, including thermal control of rigid as well as flexible electronics, flow generation and control in micro-scale heat exchangers and other thermal devices, as well as cooling of high power electrical systems, soft robotic actuators, and medical devices.


1966 ◽  
Vol 39 (4) ◽  
pp. 1247-1257 ◽  
Author(s):  
Clyde L. Whipple ◽  
John A. Thorne

Abstract Elastomeric silicones are among the best materials available for many ablative and space applications. In ablative applications, these materials protect launching equipment, safeguard various parts of vehicles and spacecraft during flight, and shield re-entering spacecraft. Generally, elastomeric silicones are used where ablative conditions involve low to moderate heat fluxes and shear forces. Ablative characteristics of materials can vary widely depending on polymer type, fillers, and applications techniques, and no one elastomeric silicone will perform in a wide range of ablative missions. A good knowledge of the ablative characteristics of silicone materials is required to select the best candidates for a given application. In the space environment, silicones are often used for seals, thermal control coatings, potting materials, and other applications because they perform well over wide temperature ranges, and because they are inherently stable to high-vacuum and ultraviolet conditions. Data given in this paper illustrate that silicones show little weight loss or loss of properties on exposure to space environmental extremes. Furthermore, these losses can be made almost negligible by proper conditioning of the finished elastomer.


2002 ◽  
Vol 736 ◽  
Author(s):  
David P. Cadogan ◽  
Lauren S. Shook

ABSTRACTNumerous applications of electrotextiles and flexible circuits have been identified that can advance systems performance for many commercial, military, and aerospace devices. Several novel uses of electrotextiles have been developed for lab testing, while others have been utilized in products on the commercial market, as well as items that have flown in space. ILC Dover, Inc. has utilized conductive fibers in various inflatable and tensile structures for signal transmission and electrostatic charge protection. Conductive and pressure sensitive textiles have been incorporated in the advanced development space suit (I-Suit) as switch controls for lights and rovers, and as signal transmission cables. Conductive fibers have been used in several stitched applications for electrostatic charge dissipation. These applications include large pharmaceutical containment enclosures where fine potent powders are being captured for transfer between manufacturing facilities, as well as impact attenuation airbags used in landing spacecraft on the surface of Mars. In both cases, conductive threads are uniquely located in seams and panel locations to gather and direct charge through surface fibers and panel interconnects. Conductive fibers have also been utilized in a conformal Sensate Liner garment for the identification of wound locations and medical sensor signal transmission for soldier health monitoring while on the battlefield. The performance challenges of these structures require a careful, systematic application of electrotextiles because of the flexing, straining, and exposure of the materials to harsh environments. ILC has also been developing “gossamer” spacecraft components utilizing unique materials and multi-functional structures to achieve extremely low mass and low launch volumes. Examples of large deployable structures featuring very thin, large flexible circuits for use in space include synthetic aperture radar (SAR) antennas, communications antenna reflectarrays, and active variable reflectance solar sails. Design and materials challenges of electrotextile and large-area flexible circuit membrane structures as demonstrated in engineered applications will be discussed in this paper.


Friction ◽  
2021 ◽  
Author(s):  
Xiaosong Li ◽  
Pengpeng Bai ◽  
Xinxin Li ◽  
Lvzhou Li ◽  
Yuanzhe Li ◽  
...  

AbstractBio-inspired reversible adhesion has significant potential in many fields requiring flexible grasping and manipulation, such as precision manufacturing, flexible electronics, and intelligent robotics. Despite extensive efforts for adhesive synthesis with a high adhesion strength at the interface, an effective strategy to actively tune the adhesion capacity between a strong attachment and an easy detachment spanning a wide range of scales has been lagged. Herein, we report a novel soft-hard-soft sandwiched composite design to achieve a stable, repeatable, and reversible strong adhesion with an easily scalable performance for a large area ranging from ∼1.5 to 150 cm2 and a high load ranging from ∼20 to 700 N. Theoretical studies indicate that this design can enhance the uniform loading for attachment by restraining the lateral shrinkage in the natural state, while facilitate a flexible peeling for detachment by causing stress concentration in the bending state, yielding an adhesion switching ratio of ∼54 and a switching time of less than ∼0.2 s. This design is further integrated into versatile grippers, climbing robots, and human climbing grippers, demonstrating its robust scalability for a reversible strong adhesion. This biomimetic design bridges microscopic interfacial interactions with macroscopic controllable applications, providing a universal and feasible paradigm for adhesion design and control.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Hu Li ◽  
Raffaello Papadakis

Graphene is a material with outstanding properties and numerous potential applications in a wide range of research and technology areas, spanning from electronics, energy materials, sensors, and actuators to life-science and many more. However, the insolubility and poor dispersibility of graphene are two major problems hampering its use in certain applications. Tethering mono-, di-, or even poly-saccharides on graphene through click-chemistry is gaining more and more attention as a key modification approach leading to new graphene-based materials (GBM) with improved hydrophilicity and substantial dispersibility in polar solvents, e.g., water. The attachment of (poly)saccharides on graphene further renders the final GBMs biocompatible and could open new routes to novel biomedical and environmental applications. In this review, recent modifications of graphene and other carbon rich materials (CRMs) through click chemistry are reviewed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2016 ◽  
Author(s):  
E. Balliu ◽  
H. Andersson ◽  
M. Engholm ◽  
S. Forsberg ◽  
H. Olin

2011 ◽  
Vol 368-373 ◽  
pp. 3628-3631
Author(s):  
Jun Liu ◽  
Wei Xian Zhang

Along with the development of society and the popularity of private cars, more and more parking lots are to be needed. Consequently, large sized parking lots will be built in many cities. But the traditional parking lots were paved by a large area of concrete. So much concrete will be bound to create heat pollution. Meanwhile, a large area of parking lot occupies mass openspace. The existing parking lots lead to a waste of resources. This paper introduces a new term of saving parking lot and presents some key principles that stem from a wide range of contributions. The newfashioned parking lot may also give rise to the sustainable development.


Sign in / Sign up

Export Citation Format

Share Document