Aluminum Sulfate Hydration Retarders for High-Calcium Fly Ash Used in Highway Construction

1986 ◽  
Vol 86 ◽  
Author(s):  
M. Tohidian ◽  
Joakim G. Laguros

ABSTRACTThe rapid hydration and setting associated with the use of high-calcium fly ash as an additive in soil and aggregate base stabilization in highway construction imposes certain limitations in regards to operational time and volume of work executed. Aluminum sulfate and its ammonium salt were evaluated as hydration reaction retarders. Mixtures of Ottawa sand and Class C high lime fly ash in a 1:1 weight ratio were used for the evaluations. These additives minimized the adverse effects of delayed compaction by recovering some of the compressive strength lost to the rapid hydration, although in all cases the density of the mixes decreased. The recovery of strength was related to the heat of hydration, wherein the peak temperature was reduced from 90°F to the range of 86–78°F at 2 hours; further temperature decreases were observed as reaction time increased. The availability of the sulfate ions, as manifested by the presence of ettringite, helps the hydration process continue, minimizes the adverse effects of delayed compaction and assists positively in the reduction of the void area of mixes and in stratlingite formation, which contributes to a strong crystalline framework.

2011 ◽  
Vol 480-481 ◽  
pp. 59-65
Author(s):  
Shuang Xi Li ◽  
Tuan She Yang ◽  
Zhi Ming Wang ◽  
Quan Hu

Low-calcium fly ash is paid much attention for its wide use in engineering, the research and application technology of it are very mature, but as to high-calcium fly ash concrete, the researches on stability, mechanical property and durability of it are very less , The existing researches are still inadequate for practice of engineering. As to this problem, using small shek kip hydropower project as example, the volume stability of high-calcium fly ash concretes with different fly ash dosages are tested, then the optimal dosage of the high-calcium fly ash is determined; based on this, the impacts of high-calcium fly ash on the performance of mechanical properties , impermeability and frost resistance of concrete are studied; Finally, macro performance is analyzed from a micro-mechanism point of view through taking the electron micrograph. As the study shows, the optimal dosage of high-calcium fly ash should be taken as 20% -25%; for the concrete with special requirements, the dosage can be relaxed to 30% when the high-calcium fly ash achieves high quality. The compressive strength of high-calcium fly ash concrete is higher than the low-calcium fly ash concrete. Strength development advantage of high-calcium fly ash concrete reflects at the early age, this advantage takes the trend of weakening as the development of age. Concrete mixed with high-calcium fly ash has good performance in impermeability. The high-calcium fly ash has high activity, the high-calcium fly ash and secondary hydration reaction products can be filled into the pore capillary and cracks of the concrete structure, improving the pore structure, thereby increasing the density of cement paste. High-calcium fly ash concrete has good performance in frost resistance. The destructive effects of freeze-thaw cycles on cement structure has connection with the microstructure of cement and impermeability , the improvement of impermeability avoids the water entering into the concrete, reduces the risk of destruction caused by frost heave.The study on micro-mechanism proves well the macro-phenomena above.


2016 ◽  
Vol 873 ◽  
pp. 105-109
Author(s):  
Cai Yu Li ◽  
Lin Yang ◽  
Jian Xin Cao ◽  
Qiu Mei Liu

Effect of the dosage of high-calcium fly ash and fineness of phosphorous slag powders on activity index of phosphorous slag powders was explored. The hydration samples of phosphorous slag powders with high-calcium fly ash content were analyzed using XRD, DSC-TG and SEM. The results showed that activity index of phosphorous slag powders increased and then decreased with the dosage of high-calcium fly ash increasing. When the dosages of high-calcium fly ash were 15%-20%, activity indexes of phosphorous slag powders were above 1. With fineness of phosphorous slag powders increasing with ranges from 370 to 440 m2·kg-1, activity indexes of phosphorous slag powders increased with ranges from 1.028 to 1.174. High-calcium fly ash accelerated the hydration reaction of phosphorous slag powders, and promoted the increase in the strength of phosphorous slag powders glue-sand.


2012 ◽  
Vol 610-613 ◽  
pp. 2275-2281 ◽  
Author(s):  
Parames Kamhangrittirong ◽  
Prasert Suwanvitaya ◽  
Watcharin Witayakul ◽  
Patcharaporn Suwanvitaya ◽  
Prinya Chindaprasirt

This research shows the progress of geopolymer synthesis based on high calcium fly ash. In this study, the fly ash contents of 60, 65, and 70 percents by weight and sodium hydroxide solution concentrations of 8 to 12 M were used. Alkali activators for the geopolymer synthesis consisted of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) and the weight ratio of Na2SiO3 to NaOH were 0.50, 1.00, and 1.50. Drying shrinkage deformation of geopolymer paste was investigated by longitudinal measurement in a room temperature. Generally, the drying shrinkage behavior could be divided into three groups. The minimum drying shrinkage strain below 3,000 x 10-6 mm/mm was observed. The results indicated that an increase in the fly ash to alkali solution ratio and the decease of NaOH concentration significantly decreased the drying shrinkage strain. The optimum ratio of Na2SiO3 to NaOH was 1.0. The findings show that high calcium fly ash geopolymer binder could be used for alternative construction materials with low shrinkage strain.


2019 ◽  
Vol 801 ◽  
pp. 397-403
Author(s):  
Pattanapong Topark-Ngarm ◽  
Tawatchai Tho-In ◽  
Vanchai Sata ◽  
Prinya Chindaprasirt ◽  
Trinh Cao

The effects of replacing high calcium fly ash with containment glass powder and limestone powder in the geopolymer are investigated in this paper. The high calcium fly ash was replaced by either glass powder or limestone powder at 20% and 40% by weight. The geopolymer paste was tested for setting time and compressive strength and evaluated of its microstructure on SEM, XRD, FTIR, and MIP. The results indicated that the setting time of geopolymer paste was increased with the replacement of glass powder and reduced by replacement of limestone powder. The compressive strengths were generally higher than those of controls. The maximum increase of compressive strength was 33% when replaced fly ash with 20% of glass powder at 8 molar NaOH concentration of sodium hydroxide solution. The microstructure evaluations show the remaining particles of raw materials and the compatible of hydration reaction and polymerization when having limestone powder in the mix proportion. Furthermore, the powder acts as a filler in the gels.


2020 ◽  
Vol 241 ◽  
pp. 118143 ◽  
Author(s):  
Ampol Wongsa ◽  
Ronnakrit Kunthawatwong ◽  
Sakchai Naenudon ◽  
Vanchai Sata ◽  
Prinya Chindaprasirt

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 900
Author(s):  
Chamila Gunasekara ◽  
Peter Atzarakis ◽  
Weena Lokuge ◽  
David W. Law ◽  
Sujeeva Setunge

Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, Na2SiO3/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25–45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


Sign in / Sign up

Export Citation Format

Share Document