Development of a High-Throughput Impedance Spectroscopy Screening System (HT-IS) for Characterisation of Novel Nanoscaled Gas Sensing Materials

2005 ◽  
Vol 876 ◽  
Author(s):  
Daniel Sanders ◽  
Maike Siemons ◽  
Tobias Koplin ◽  
Ulrich Simon

AbstractA high-throughput work flow for rapid synthesis and testing of metal oxide nanoparticles for the discovery of new gas sensors of improved sensitivity and selectivity has been developed. The material libraries consist of nanoscaled metal oxide particles which are obtained either from pyrolysis of appropriate precursors or from polyol mediated synthesis. The design of a multielectrode array with 8x8 interdigital electrodes allows efficient and automated pipetting robot assisted sample preparation and material deposition. For characterisation of the sensor arrays high throughput impedance spectroscopy has been used. Test gas sequences and sensor temperatures can be varied. As an example, the properties of an In2O3-based library are introduced.

2018 ◽  
Vol 54 (23) ◽  
pp. 2914-2917 ◽  
Author(s):  
Kerda Keevend ◽  
Guido Panzarasa ◽  
Fabian H. L. Starsich ◽  
Martin Zeltner ◽  
Anastasia Spyrogianni ◽  
...  

MeltPEGylation constitutes an elegant one-pot route for the efficient PEGylation of metal oxide nanoparticles with improved hemo- and cytocompatibility.


2019 ◽  
Vol 48 (13) ◽  
pp. 4413-4419 ◽  
Author(s):  
Xuxu Tang ◽  
Ming Liang ◽  
Yanfeng Zhang ◽  
Weiwei Sun ◽  
Yong Wang

A metal–organic-framework template approach was used to fabricate ultrafine ternary metal oxide nanoparticles embedded in CNTs, which exhibit larger-than-theoretical reversible capacities for lithium-ion batteries.


The Analyst ◽  
2019 ◽  
Vol 144 (13) ◽  
pp. 4100-4110 ◽  
Author(s):  
Sonia Freddi ◽  
Giovanni Drera ◽  
Stefania Pagliara ◽  
Andrea Goldoni ◽  
Luigi Sangaletti

Layers of CNTs decorated with metal and metal–oxide nanoparticles can be used to develop highly selective gas sensor arrays.


2014 ◽  
Vol 605 ◽  
pp. 299-302 ◽  
Author(s):  
Jerome Rossignol ◽  
Didier Stuerga

In literature, many papers describe the applications of semiconductor as sensitive material in sensor field. The gas sensor using tin oxide requires a strictly controlled high operating temperature in order to detect both reducing and oxidizing gases. The semiconductor nanoparticles, with their high specific surface area, increase the gas sensing performance. The originality of this work is to valorize the nanoparticle of metal oxide like SnO2, TiO2 obtained by microwave thermohydrolysis synthesis, using a gas sensing microwave transduction. The present synthesis is to prepare metal oxide nanocrystalline powder with a high surface area by microwave-induced thermohydrolysis. We propose to study the influence of the metal oxide nanoparticle, as a sensitive layer, in gas sensing measurement. The pollutant is added into an argon flow (dynamic regim). This work highlights a specific sensor response to each ammonia concentration at room temperature. It shows a quasi-linear relationship between the set of points of the real part of the response and the ammonia concentration. The authors are currently working on these issues as well as the interaction mechanism between adsorbed gas molecules and metal oxide films.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sanggon Kim ◽  
Jacob Brady ◽  
Faraj Al-Badani ◽  
Sooyoun Yu ◽  
Joseph Hart ◽  
...  

Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 606 ◽  
Author(s):  
Zhenghao Mao ◽  
Jianchao Wang ◽  
Youjin Gong ◽  
Heng Yang ◽  
Shunping Zhang

In a new E-nose development, the sensor array needs to be optimized to have enough sensitivity and selectivity for gas/odor classification in the application. The development process includes the preparation of gas sensitive materials, gas sensor fabrication, array optimization, sensor array package and E-nose system integration, which would take a long time to complete. A set of platforms including a gas sensing film parallel synthesis platform, high-throughput gas sensing unmanned testing platform and a handheld wireless E-nose system were presented in this paper to improve the efficiency of a new E-nose development. Inkjet printing was used to parallel synthesize sensor libraries (400 sensors can be prepared each time). For gas sensor selection and array optimization, a high-throughput unmanned testing platform was designed and fabricated for gas sensing measurements of more than 1000 materials synchronously. The structures of a handheld wireless E-nose system with low power were presented in detail. Using the proposed hardware platforms, a new E-nose development might only take one week.


Small ◽  
2013 ◽  
Vol 9 (9-10) ◽  
pp. 1775-1775 ◽  
Author(s):  
Sijie Lin ◽  
Yan Zhao ◽  
Zhaoxia Ji ◽  
Jason Ear ◽  
Chong Hyun Chang ◽  
...  

2020 ◽  
Vol MA2020-01 (28) ◽  
pp. 2124-2124
Author(s):  
Takafumi Akamatsu ◽  
Toshio Itoh ◽  
Yoshitake Masuda

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2710
Author(s):  
Jianghua Luo ◽  
Yishan Jiang ◽  
Feng Xiao ◽  
Xin Zhao ◽  
Zheng Xie

Nowadays, despite the easy fabrication and low cost of metal oxide gas sensors, it is still challenging for them to detect gases at low concentrations. In this study, resistance-matched p-type Cu2O and n-type Ga-doped ZnO, as well as p-type CdO/LaFeO3 and n-type CdO/Sn-doped ZnO sensors were prepared and integrated into p + n sensor arrays to enhance their gas-sensing performance. The materials were characterized by scanning electron microscopy, transmittance electron microscopy, and X-ray diffractometry, and gas-sensing properties were measured using ethanol and acetone as probes. The results showed that compared with individual gas sensors, the response of the sensor array was greatly enhanced and similar to the gas response product of the p- and n-type gas sensors. Specifically, the highly sensitive CdO/LaFeO3 and CdO/Sn-ZnO sensor array had a high response of 21 to 1 ppm ethanol and 14 to 1 ppm acetone, with detection limits of <0.1 ppm. The results show the effect of sensor array integration by matching the two sensor resistances, facilitating the detection of gas at a low concentration.


Sign in / Sign up

Export Citation Format

Share Document