Materials Engineering Problems in Crystal Growth and Epitaxy of Cuprate Superconductors

MRS Bulletin ◽  
1994 ◽  
Vol 19 (9) ◽  
pp. 26-32 ◽  
Author(s):  
Hans J. Scheel

The discovery of superconductivity in yttrium barium cuprate above the boiling point of liquid nitrogen by Wu et al. initiated a race in the search for higher critical temperatures (Tc) which was singular in the history of science. Since the ceramic superconducting pellets could be prepared nearly overnight and superconductivity easily demonstrated with liquid nitrogen and a levitating magnet, a great deal of effort went into garnering funds for a “new technological era.” High Tc superconductivity (HTSC) was expected to have applications in many areas of our life, be it for energy transport and high-power generators, transformers, current limiters, or for ultrafast computers and communication technology, or in medicine for NMR tomography and for SQUIDs in magnetic encephalography. Large-scale uses were also foreseen, such as levitation for trains, magnetohydrodynamic propulsion in ships, and applications for fusion reactors. Thousands of physicists and engineers searched for new materials with high Tc, and explored thin-film preparation by physical vapor deposition. In the early phase only a few scientists recognized that materials engineering problems would greatly hinder the development of applications of the cuprate superconductors. Most early efforts on HTSC went toward physical investigations of samples (crystals, layers, sheets, wires, etc.) which due to their complexity could not be reproducibly prepared, and which were not adequately characterized (see the section on Characterization). The Bi-, Tl-, and Hg-containing cuprates with Tc up to 135 K, for example, were found empirically, not by physical understanding of the HTSC phenomenon. Applications of HTSC have been limited to very specific areas, but a concerted effort should reveal opportunities for the materials research and superconductivity communities. Significant applications could be developedwhich in the long run would also benefit fundamental physical investigations of the HTSC phenomenon.

2011 ◽  
Vol 55-57 ◽  
pp. 251-256
Author(s):  
Li Ma ◽  
Ting Zhang ◽  
Xiao Li ◽  
Zhao Hui Hu

Large-scale Ni-based super-alloy sheet has been prepared by electron beam physical vapor deposition (EB-PVD). Microstructure and the dislocation structures in the γ-γ′ double phase alloy under different temperature after tensile strain are studied with Transmission electron microscopy (TEM). The results show that the dislocation glide in single slip system and shearing mechanics, the dislocation climb with part shearing, absolute dislocation climb and cross slip, dislocation round are a course of the interacting degree between dislocation and γ′ phase gradually weakened under the tensile temperature from room temperature to high temperature, so as to decrease materials strength and increase plasticity.


MRS Bulletin ◽  
2018 ◽  
Vol 43 (12) ◽  
pp. 936-940 ◽  
Author(s):  
Weiguo Hu ◽  
Kourosh Kalantar-Zadeh ◽  
Kapil Gupta ◽  
Chuan-Pu Liu
Keyword(s):  

Abstract


2019 ◽  
Vol 32 (3) ◽  
pp. 701-716 ◽  
Author(s):  
Magnus Hieronymus ◽  
Jonas Nycander ◽  
Johan Nilsson ◽  
Kristofer Döös ◽  
Robert Hallberg

The role of oceanic background diapycnal diffusion for the equilibrium climate state is investigated in the global coupled climate model CM2G. Special emphasis is put on the oceanic meridional overturning and heat transport. Six runs with the model, differing only by their value of the background diffusivity, are run to steady state and the statistically steady integrations are compared. The diffusivity changes have large-scale impacts on many aspects of the climate system. Two examples are the volume-mean potential temperature, which increases by 3.6°C between the least and most diffusive runs, and the Antarctic sea ice extent, which decreases rapidly as the diffusivity increases. The overturning scaling with diffusivity is found to agree rather well with classical theoretical results for the upper but not for the lower cell. An alternative empirical scaling with the mixing energy is found to give good results for both cells. The oceanic meridional heat transport increases strongly with the diffusivity, an increase that can only partly be explained by increases in the meridional overturning. The increasing poleward oceanic heat transport is accompanied by a decrease in its atmospheric counterpart, which keeps the increase in the planetary energy transport small compared to that in the ocean.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2017 ◽  
Vol 30 (21) ◽  
pp. 8783-8794 ◽  
Author(s):  
Brian Soden ◽  
Eui-Seok Chung

Radiative kernels are used to quantify the instantaneous radiative forcing of aerosols and the aerosol-mediated cloud response in coupled ocean–atmosphere model simulations under both historical and future emission scenarios. The method is evaluated using matching pairs of historical climate change experiments with and without aerosol forcing and accurately captures the spatial pattern and global-mean effects of aerosol forcing. It is shown that aerosol-driven changes in the atmospheric circulation induce additional cloud changes. Thus, the total aerosol-mediated cloud response consists of both local microphysical changes and nonlocal dynamical changes that are driven by hemispheric asymmetries in aerosol forcing. By comparing coupled and fixed sea surface temperature (SST) simulations with identical aerosol forcing, the relative contributions of these two components are isolated, exploiting the ability of prescribed SSTs to also suppress changes in the atmospheric circulation. The radiative impact of the dynamical cloud changes is found to be comparable in magnitude to that of the microphysical cloud changes and acts to further amplify the interhemispheric asymmetry of the aerosol radiative forcing. The dynamical cloud response is closely linked to the meridional displacement of the Hadley cell, which, in turn, is driven by changes in the cross-equatorial energy transport. In this way, the dynamical cloud changes act as a positive feedback on the meridional displacement of the Hadley cell, roughly doubling the projected changes in cross-equatorial energy transport compared to that from the microphysical changes alone.


Carbon ◽  
2014 ◽  
Vol 79 ◽  
pp. 470-477 ◽  
Author(s):  
Jinping Zhao ◽  
Bingjun Yang ◽  
Zhi Yang ◽  
Peng Zhang ◽  
Zongmin Zheng ◽  
...  

2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


1988 ◽  
Vol 130 ◽  
pp. 602-603
Author(s):  
D. Gerbal ◽  
H. Siroussezia

The great amount of unseen dynamical matter in large scale structures is derived from: the Newton's law of inertia and the theory of gravitation. But none of these law has been tested on scale larger than r > 10Kpc. It is then tempting to modify them following: where g(x) is a phenomenological function.


Sign in / Sign up

Export Citation Format

Share Document