scholarly journals The Large-Scale Dynamical Response of Clouds to Aerosol Forcing

2017 ◽  
Vol 30 (21) ◽  
pp. 8783-8794 ◽  
Author(s):  
Brian Soden ◽  
Eui-Seok Chung

Radiative kernels are used to quantify the instantaneous radiative forcing of aerosols and the aerosol-mediated cloud response in coupled ocean–atmosphere model simulations under both historical and future emission scenarios. The method is evaluated using matching pairs of historical climate change experiments with and without aerosol forcing and accurately captures the spatial pattern and global-mean effects of aerosol forcing. It is shown that aerosol-driven changes in the atmospheric circulation induce additional cloud changes. Thus, the total aerosol-mediated cloud response consists of both local microphysical changes and nonlocal dynamical changes that are driven by hemispheric asymmetries in aerosol forcing. By comparing coupled and fixed sea surface temperature (SST) simulations with identical aerosol forcing, the relative contributions of these two components are isolated, exploiting the ability of prescribed SSTs to also suppress changes in the atmospheric circulation. The radiative impact of the dynamical cloud changes is found to be comparable in magnitude to that of the microphysical cloud changes and acts to further amplify the interhemispheric asymmetry of the aerosol radiative forcing. The dynamical cloud response is closely linked to the meridional displacement of the Hadley cell, which, in turn, is driven by changes in the cross-equatorial energy transport. In this way, the dynamical cloud changes act as a positive feedback on the meridional displacement of the Hadley cell, roughly doubling the projected changes in cross-equatorial energy transport compared to that from the microphysical changes alone.

2015 ◽  
Vol 28 (17) ◽  
pp. 6589-6607 ◽  
Author(s):  
Leighton A. Regayre ◽  
Kirsty J. Pringle ◽  
Lindsay A. Lee ◽  
Alexandru Rap ◽  
Jo Browse ◽  
...  

Abstract Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime and heterogeneous emissions. Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties on calculations of the balance of incoming and outgoing radiation are found to be spatially and temporally dependent. Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional importance of some parameters. Parameters that contribute little to uncertainty in Earth’s global energy balance during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale climate effects. Substantial simulated uncertainty in CAE forcing in the eastern Pacific leaves open the possibility that apparent shifts in the mean ENSO state may result from a forced aerosol signal on multidecadal time scales. A likely negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern Hemisphere aerosol emission reductions and CAE forcing of sea surface temperatures in the main Atlantic hurricane development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, suggesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2017 ◽  
Vol 30 (16) ◽  
pp. 6585-6589 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler

Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, [Formula: see text] must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and [Formula: see text] In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby [Formula: see text] becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on [Formula: see text] These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and [Formula: see text] and thus provides little basis for revising this lower bound.


2017 ◽  
Vol 10 (1) ◽  
pp. 433-452 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Karsten Peters ◽  
Sebastian Rast ◽  
...  

Abstract. A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be −0.6 and −0.5 W m−2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.


2020 ◽  
Author(s):  
Rei Chemke ◽  
Lorenzo Polvani

<p>The weakening of the Hadley cell and of the midlatitude eddy heat fluxes are two of the most robust responses of the atmospheric circulation to increasing concentrations of greenhouse gases.  These changes have important global climatic impacts, as the large-scale circulation acts to transfer heat and moisture from the tropics to polar regions.  Here, we examine Hadley cell and eddy heat flux trends in recent decades: contrasting model simulations with reanalyses, we uncover two important flaws -- one in the reanalyses and other in the model simulations -- that have, to date, gone largely unnoticed.<br><br>First, we find that while climate models simulate a weakening of the Hadley cell over the past four decades, most atmospheric reanalyses indicate a considerable strengthening.  Interestingly, that discrepancy does not stem from biases in climate models, but appears to be related to artifacts in the representation of latent heating in the reanalyses.  This suggests that when dealing with the divergent part of the large-scale circulation, reanalyses may be fundamentally unreliable for the calculation of trends, even for trends spanning several decades.<br><br>Second, we examine recent trends in eddy heat fluxes at midlatitudes, which are directly linked the equator-to-pole temperature gradient.  In the Northern Hemisphere models and reanalyses are in good agreement. In the Southern Hemisphere, however, models show a weakening while reanalyses indicate a robust strengthening.  In this case, the flaw is found to be with the climate models, which are unable to simulate the observed multidecadal cooling of the Southern Ocean at high-latitudes, and the accompanying increase in sea-ice.  While the biases in modeled Antarctic sea ice trends have been widely reported, our results demonstrates that such biases have important implications well beyond the high Southern latitudes, as they impact the equator-to-pole temperature and, as a consequence, the midlatitude atmospheric circulation.</p>


2008 ◽  
Vol 65 (9) ◽  
pp. 2877-2891 ◽  
Author(s):  
K. M. Markowicz ◽  
P. J. Flatau ◽  
J. Remiszewska ◽  
M. Witek ◽  
E. A. Reid ◽  
...  

Abstract Aerosol radiative forcing in the Persian Gulf region is derived from data collected during the United Arab Emirates (UAE) Unified Aerosol Experiment (UAE2). This campaign took place in August and September of 2004. The land–sea-breeze circulation modulates the diurnal variability of the aerosol properties and aerosol radiative forcing at the surface. Larger aerosol radiative forcing is observed during the land breeze in comparison to the sea breeze. The aerosol optical properties change as the onshore wind brings slightly cleaner air. The mean diurnal value of the surface aerosol forcing during the UAE2 campaign is about −20 W m−2, which corresponds to large aerosol optical thickness (0.45 at 500 nm). The aerosol forcing efficiency [i.e., broadband shortwave forcing per unit optical depth at 550 nm, W m−2 (τ500)−1] is −53 W m−2 (τ500)−1 and the average single scattering albedo is 0.93 at 550 nm.


2012 ◽  
Vol 12 (12) ◽  
pp. 32631-32706 ◽  
Author(s):  
C. A. Randles ◽  
S. Kinne ◽  
G. Myhre ◽  
M. Schulz ◽  
P. Stier ◽  
...  

Abstract. In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.


2019 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Bjørn H. Samset

Abstract. Emissions of anthropogenic aerosols are expected to change drastically over the coming decades, with potentially significant climate implications. Using the most recent generation of harmonized emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry transport and radiative transfer model, we provide estimates of the projected future global and regional burdens and radiative forcing of anthropogenic aerosols under three different levels of air pollution control: strong (SSP1), medium (SSP2) and weak (SSP3). We find that the broader range of future air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates into total aerosol forcing estimates in 2100 relative to 1750 ranging from −0.04 W m−2 in SSP1-1.9 to −0.51 W m−2 in SSP3-7.0. Compared to our 1750–2015 estimate of −0.61 W m−2, this shows that depending on the success of air pollution policies over the coming decades, aerosol radiative forcing may weaken by nearly 95 % or remain close to the pre-industrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to 2015, from 0.51 W m−2 in SSP1-1.9 to 0.04 W m−2 in SSP3-7.0. Results also demonstrate significant differences across regions and scenarios, especially in South Asia and Africa. While rapid weakening of the negative aerosol forcing following effective air quality policies will unmask more of the greenhouse gas-induced global warming, slow progress on mitigating air pollution will significantly enhance the atmospheric aerosol levels and risk to human health. In either case, the resulting impacts on regional and global climate can be significant.


2020 ◽  
Vol 20 (1) ◽  
pp. 613-623 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Johannes Mülmenstädt ◽  
Andrew Gettelman ◽  
Florent F. Malavelle ◽  
Hugh Morrison ◽  
...  

Abstract. The radiative forcing from aerosols (particularly through their interaction with clouds) remains one of the most uncertain components of the human forcing of the climate. Observation-based studies have typically found a smaller aerosol effective radiative forcing than in model simulations and were given preferential weighting in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). With their own sources of uncertainty, it is not clear that observation-based estimates are more reliable. Understanding the source of the model and observational differences is thus vital to reduce uncertainty in the impact of aerosols on the climate. These reported discrepancies arise from the different methods of separating the components of aerosol forcing used in model and observational studies. Applying the observational decomposition to global climate model (GCM) output, the two different lines of evidence are surprisingly similar, with a much better agreement on the magnitude of aerosol impacts on cloud properties. Cloud adjustments remain a significant source of uncertainty, particularly for ice clouds. However, they are consistent with the uncertainty from observation-based methods, with the liquid water path adjustment usually enhancing the Twomey effect by less than 50 %. Depending on different sets of assumptions, this work suggests that model and observation-based estimates could be more equally weighted in future synthesis studies.


Sign in / Sign up

Export Citation Format

Share Document