A Study on Tensile Deformation Features of Ni-Based Super-Alloy Prepared by EB-PVD

2011 ◽  
Vol 55-57 ◽  
pp. 251-256
Author(s):  
Li Ma ◽  
Ting Zhang ◽  
Xiao Li ◽  
Zhao Hui Hu

Large-scale Ni-based super-alloy sheet has been prepared by electron beam physical vapor deposition (EB-PVD). Microstructure and the dislocation structures in the γ-γ′ double phase alloy under different temperature after tensile strain are studied with Transmission electron microscopy (TEM). The results show that the dislocation glide in single slip system and shearing mechanics, the dislocation climb with part shearing, absolute dislocation climb and cross slip, dislocation round are a course of the interacting degree between dislocation and γ′ phase gradually weakened under the tensile temperature from room temperature to high temperature, so as to decrease materials strength and increase plasticity.

2007 ◽  
Vol 353-358 ◽  
pp. 457-460
Author(s):  
Guang Pin Song ◽  
Xiao Dong He ◽  
Yue Sun ◽  
Ming Wei Li

Large scale Ni-based alloy sheets are prepared by electron beam physical vapor deposition with and without tungsten added into melting pools respectively. Addition W increased vapor rate and decreased compositional transformation during deposition. Chemical constitution of the sheet prepared through tungsten is more similar to that of the ingot. Microstructure of two alloy sheets is observed by scanning electron microscope (SEM) and atom force microscope (AFM). The results show that both of the sheets consist of columnar grains, whose major axes are almost parallel to the normal direction of the sheet. However, the average diameter of grains of the sheet through tungsten is larger than that of the sheet not through tungsten in minor axis direction. Mechanical properties and failure mechanisms of both sheets are studied. Tensile tests are conducted on a number of specimens. Strength, strain-to-failure are estimated under loading condition. The results show that the sheet prepared by EB-PVD through tungsten has a superior strength and an elongation percentage than that of the one prepared without tungsten.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Jörg M. K. Wiezorek ◽  
Andreas K. Kulovits

AbstractIn this study we investigated the deformation behavior of the hexagonal ordered phase α2- Ti3Al in Duplex TiAl under tensile loading. Transmission electron microscopy (TEM) revealed that the orientation relation ships (OR) between α2-Ti3Al and the L10 ordered γ- TiAl phase are very different as compared to the OR common in fully lamellar PST TiAl. We observed deformation related <2c+a> dislocation activity on pyramidal slip systems in the α2-phase during post situ TEM analyses. We rationalize this observation by the possible build up of pile up stresses in γ-TiAl due to the different OR with the α2-Ti3Al phase that can possibly lead to the activation of <2c+a> dislocation activity on pyramidal slip systems with similarly resolved stresses in the α2-Ti3Al phase.


Author(s):  
W. R. Duff ◽  
L. E. Thomas ◽  
R. M. Fisher ◽  
S. V. Radcliffe

Successful retrieval of the television camera and other components from the Surveyor III spacecraft by the Apollo 12 astronauts has provided a unique opportunity to study the effects of a known and relatively extensive exposure to the lunar environment. Microstructural effects including those produced by micro-meteorite impact, radiation damage (by both the solar wind and cosmic rays) and solar heating might be expected in the materials used to fabricate the spacecraft. Samples received were in the form of 1 cm2 of painted unpainted aluminum alloy sheet from the top of the camera visor (JPL Code 933) and the sides (935,936) and bottom (934) of the lower camera shroud. They were prepared for transmission electron microscopy by first hand-grinding with abrasive paper to a thickness of 0.006". The edges were lacquered and the sample electropolished in 10% perchloric methanol using the “window” method, to a thickness of ~0.001". Final thinning was accomplished by polishing 3 mm punched disks in an acetic-phosphoric-nitric acid solution.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


2019 ◽  
Author(s):  
Chem Int

This research work presents a facile and green route for synthesis silver sulfide (Ag2SNPs) nanoparticles from silver nitrate (AgNO3) and sodium sulfide nonahydrate (Na2S.9H2O) in the presence of rosemary leaves aqueous extract at ambient temperature (27 oC). Structural and morphological properties of Ag2SNPs nanoparticles were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface Plasmon resonance for Ag2SNPs was obtained around 355 nm. Ag2SNPs was spherical in shape with an effective diameter size of 14 nm. Our novel approach represents a promising and effective method to large scale synthesis of eco-friendly antibacterial activity silver sulfide nanoparticles.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Sandip Madhukar Deshmukh ◽  
Mohaseen S. Tamboli ◽  
Hamid Shaikh ◽  
Santosh B. Babar ◽  
Dipak P. Hiwarale ◽  
...  

In the present work, we have reported a facile and large-scale synthesis of TiO2 nanoparticles (NPs) through urea-assisted thermal decomposition of titanium oxysulphate. We have successfully synthesized TiO2 NPs by using this effective route with different weight ratios of titanium oxysulphate: urea. The structures and properties of TiO2 NPs were confirmed by scanning electron microscope) (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), ultra violet–visible spectroscopy (UV-vis), and photoluminescence (Pl) techniques. XRD demonstrated that TiO2 NPs holds of anatase crystal phase with crystallizing size 14–19 nm even after heating at 600 °C. TGA, SEM, and TEM images reveal urea’s role, which controls the size, morphology, and aggregation of TiO2 NPs during the thermal decomposition. These TiO2 NPs were employed for photodegradation of Methyl Orange (MO) in the presence of ultraviolet (UV) radiation. An interesting find was that the TiO2 NPs exhibited better photocatalytic activity and excellent recycling stability over several photodegradation cycles. Furthermore, the present method has a great perspective to be used as an efficient method for large-scale synthesis of TiO2 NPs.


2021 ◽  
Vol 22 (2) ◽  
pp. 734
Author(s):  
Paul K. Varghese ◽  
Mones Abu-Asab ◽  
Emilios K. Dimitriadis ◽  
Monika B. Dolinska ◽  
George P. Morcos ◽  
...  

Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19–469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


Author(s):  
Aaron M. Swedberg ◽  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Ligament volumetric behavior controls fluid and thus nutrient movement as well as the mechanical response of the tissue to applied loads. The reported Poisson’s ratios for tendon and ligament subjected to tensile deformation loading along the fiber direction are large, ranging from 0.8 ± 0.3 in rat tail tendon fascicles [1] to 2.98 ± 2.59 in bovine flexor tendon [2]. These Poisson’s ratios are indicative of volume loss and thus fluid exudation [3,4]. We have developed micromechanical finite element models that can reproduce both the characteristic nonlinear stress-strain behavior and large, strain-dependent Poisson’s ratios seen in tendons and ligaments [5], but these models are computationally expensive and unfeasible for large scale, whole joint models. The objectives of this research were to develop an anisotropic, continuum based constitutive model for ligaments and tendons that can describe strain-dependent Poisson’s ratios much larger than the isotropic limit of 0.5. Further, we sought to demonstrate the ability of the model to describe experimental data, and to show that the model can be combined with biphasic theory to describe the rate- and time-dependent behavior of ligament and tendon.


2000 ◽  
Vol 646 ◽  
Author(s):  
M. Zakaria ◽  
P.R. Munroe

ABSTRACTVoid formation in stoichiometric NiAl was studied through controlled heat treatments and transmission electron microscopy. Voids formed at temperatures as low as 400°C, but dissolved during annealing at 900°C. Both cuboidal and rhombic dodecahedral voids were observed, often at the same annealing temperature. At higher annealing temperatures (>800°C) extensive dislocation climb was noted. The relative incidence of void formation and dislocation climb can be related to the mobility of vacancies at each annealing temperature. Further, differences in void shape can be described in terms of their relative surface energy and mode of nucleation.


Sign in / Sign up

Export Citation Format

Share Document