Thin Film Deposition Processes

MRS Bulletin ◽  
1988 ◽  
Vol 13 (11) ◽  
pp. 18-21 ◽  
Author(s):  
Russell Messier

Thin film materials pervade our everyday life as transparent conductors in LCD watches and computer displays and in defrosters for automobiles... antireflection coatings for camera lenses… optical fibers for communication … architectural glass coatings for both color and energy efficiency… solar cells… decorative coatings on plastics such as for toys and automobiles parts… a whole host of electronic and optoelectronic devices… hard coatings for cutting tools, drill bits, and bearings … even metallic coatings inside potato chip bags to keep the chips crisp!Without thin films our lifestyles would be drastically different. And this trend toward increased use of thin film technology will only continue.The varied reasons for using thin films and the specific deposition processes for preparing them are often complex; but usually relate to function, cost, beauty, materials and energy efficiency, and performance. In addition to technological applications, scientists are finding thin films to be an invaluable tool for investigating new physical phenomena, even at the quantum level. For instance, two of the most important new materials—high temperature ceramic superconductors and diamond coatings — are currently being made by several thin film deposition processes in order to explore both their scientific and technological potential.Just 25 years ago the variety of deposition processes for preparing thin films was quite limited. Thin film scientists and technologists had at their disposal electrodeposition, elementary chemical vapor deposition, evaporation, and dc sputtering. Commercial equipment for electron-beam evaporation, a mainstay in the optical coatings industry, was just being developed. Most of the deposition processes reviewed in this and next month's MRS BULLETIN were either not commercially available or were not even conceived of then.

Author(s):  
James E. Maslar ◽  
William A. Kimes ◽  
Brent A. Sperling

Thin film vapor deposition processes, e.g., chemical vapor deposition, are widely used in high-volume manufacturing of electronic and optoelectronic devices. Ensuring desired film properties and maximizing process yields require control of the chemical precursor flux to the deposition surface. However, achieving the desired control can be difficult due to numerous factors, including delivery system design, ampoule configuration, and precursor properties. This report describes an apparatus designed to investigate such factors. The apparatus simulates a single precursor delivery line, e.g., in a chemical vapor deposition tool, with flow control, pressure monitoring, and a precursor-containing ampoule. It also incorporates an optical flow cell downstream of the ampoule to permit optical measurements of precursor density in the gas stream. From such measurements, the precursor flow rate can be determined, and, for selected conditions, the precursor partial pressure in the headspace can be estimated. These capabilities permit this apparatus to be used for investigating a variety of factors that affect delivery processes. The methods of determining the pressure to (1) calculate the precursor flow rate and (2) estimate the headspace pressure are discussed, as are some of the errors associated with these methods. While this apparatus can be used under a variety of conditions and configurations relevant to deposition processes, the emphasis here is on low-volatility precursors that are delivered at total pressures less than about 13 kPa downstream of the ampoule. An important goal of this work is to provide data that could facilitate both deposition process optimization and ampoule design refinement.


2009 ◽  
Vol 24 (6) ◽  
pp. 1994-2000 ◽  
Author(s):  
Jennifer L. Wohlwend ◽  
Cosima N. Boswell ◽  
Simon R. Phillpot ◽  
Susan B. Sinnott

The growth of SrTiO3 (STO) thin films is examined using classical molecular dynamics simulations. First, a beam of alternating SrO and TiO2 molecules is deposited on the (001) surface of STO with incident kinetic energies of 0.1, 0.5, or 1.0 eV/atom. Second, deposition of alternating SrO and TiO2 monolayers, where both have incident energies of 1.0 eV/atom, is examined. The resulting thin film morphologies predicted by the simulations are compared to available experimental data. The simulations indicate the way in which the incident energy, surface termination, and beam composition influence the morphology of the thin films. On the whole, some layer-by-layer growth is predicted to occur on both SrO- and TiO2-terminated STO for both types of deposition processes, with the alternating monolayer approach yielding thin films with compositions that are much closer to that of bulk STO.


2008 ◽  
Vol 388 ◽  
pp. 179-182 ◽  
Author(s):  
Rintarou Morohashi ◽  
Naoki Wakiya ◽  
Takanori Kiguchi ◽  
Tomohiko Yoshioka ◽  
M. Tanaka ◽  
...  

Lithium niobate (LiNbO3) thin films were deposited on Al2O3(001) substrates using metal-organic chemical vapor deposition (MOCVD), with Li(dpm) and Nb(C2H5)5 as precursors. By optimizing the conditions of thin film deposition, the c-axis oriented and epitaxially grown LiNbO3 thin films with stoichiometric composition were deposited on an Al2O3(001) substrate. The refractive index of the stoichiometric LiNbO3 thin film was 2.24 at = 632.8 nm, which is close to that of bulk crystal.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Valentina V. Utochnikova ◽  
Oxana V. Kotova ◽  
Andrey A. Vaschenko ◽  
Leonid S. Lepnev ◽  
Alexei G. Vitukhnovsky ◽  
...  

The new reactive chemical vapor deposition (RCVD) method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm)3) and carboxylic acid (HCarb orH2Carb′) and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz)3) ando-phenoxybenzoate thin films, and Tb(bz)3thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz)3/Ca/Al. Electroluminescence spectra of Tb(bz)3showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.


1991 ◽  
Vol 219 ◽  
Author(s):  
S. P. Hotaling ◽  
F. P. Proni

ABSTRACTAmorphous Hydrogenated Silicon (a-Si:H) photovoltaic thin films have been deposited onto ultra low density (ULD) silica aerogel substrates using plasma enhanced chemical vapor deposition (PECVD). The techniques and results of ULD aerogel fabrication, surface treatment, thin film deposition and photovoltaic (PV) characterization are discussed. DC photbcurrent and transient time of flight measurements were performed for the PV characterization, while ellipsometry, transmission optical spectrophotometry, scanning electron microscopy (SEM) and low magnification optical microscopy (×64) were used to obtain qualitative and quantitative surface morphology, microstructure and film thickness data. This research indicates that ULD aerogels may be used as substrates for dielectric and metallic thin films which have electrical, optical and mechanical properties comparable to films deposited onto conventional substrates such as glass, metals or plastics. These data taken together with the lightweight of the ULD aerogels may be of interest to the space based sensor community as a possible route to large, lightweight photonic sensors or PV arrays. These results thus indicate that ULD aerogels could be used as substrate materials for other thin films of interest to the PV community, for example, we have produced ultra lightweight reflective optics using this fusion of solgel and thin film technologies [1].


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


2019 ◽  
Vol 7 (36) ◽  
pp. 20733-20741 ◽  
Author(s):  
Mehri Ghasemi ◽  
Miaoqiang Lyu ◽  
Md Roknuzzaman ◽  
Jung-Ho Yun ◽  
Mengmeng Hao ◽  
...  

The phenethylammonium cation significantly promotes the formation of fully-covered thin-films of hybrid bismuth organohalides with low surface roughness and excellent stability.


Sign in / Sign up

Export Citation Format

Share Document