scholarly journals Model Routing Data pada Pembangkit Listrik Tenaga Mikrohidro (PLTMH) Berbasis Jaringan Sensor Nikabel (JSN)

2021 ◽  
Vol 7 (1) ◽  
pp. 49-61
Author(s):  
Nivika Tiffany Somantri ◽  
Naftalin Winanti ◽  
Fatkhurrohman Fatkhurrohman

Pembangkit listrik tenaga mikrohidro adalah salah satu sumber energi listrik terbarukan saat ini dengan memanfaatkan tenaga air berskala kecil untuk penggeraknya. PLTMH pada umumnya memiliki ruang kontrol yang berada jauh dengan sistemnya, sehingga dibutuhkan suatu sistem monitoring. Penggunaan sistem monitoring berbasis nirkabel menjadi salah satu solusi untuk mengatasi masalah tersebut dengan proses pengiriman informasi yang cepat dan mudah. Penelitian ini merancang suatu model routing data dengan perancangan hardware dan software pada komunikasi data. Sistem dibangun menggunakan mikrokontroller arduino dan komunikasi frekuensi Xbee dengan protocol zigbee. Pengujian dilakukan dengan menggunakan berbagai macam topologi yaitu topologi pair, star, mesh, tree, dan x dalam model routing data baik dalam lingkungan indoor maupun lingkungan outdoor. Hasil yang didapat berdasarkan pengujian pada lingkungan indoor menunjukan Xbee tetap dapat mengirim dalam ruangan yang memiliki penghalang dengan jarak 21m, sedangkan pada pengujian outdoor, Xbee dapat tetap mengirim dengan jarak maksimum 120.5m menggunakan model topologi x. Berdasarkan semua pemodelan yang telah dilakukan, topologi x merupakan model yang dianggap paling berhasil walaupun memiliki kelemahan dalam tingkat kerapihan penerimaan data namun dari tingkat keamanannya ketika terjadi masalah dengan salah satu node, topologi x masih memiliki jalur lain untuk dapat mengirimkan data ke penerima. Micro hydropower plant is one of the current renewable electrical energy by making use of small-scale water power for propulsion. MHPP generally has a control room that was away with the system, so we need a monitoring system. The use of wireless-based monitoring systems into one solution to overcome these problems with the delivery process information quickly and easily. Therefore, we designed a model of routing data by designing hardware and software in data communication comprising Arduino microcontroller and Xbee frequency communication with ZigBee protocol. Testing is done by using a variety of topologies, namely topology pair, star, mesh, tree, and x in the model routing of data in both the indoor and outdoor environment. The results obtained by testing the indoor environment is Xbee can still send in a room that had a barrier at a distance of 21m, while the outdoor testing Xbee can still send more than the maximum distance delivery Xbee 70.5m in research that is by using the model topology x. Based on all the modeling that has been done, topology x is the model that is considered the most successful even though it has weaknesses in the level of data reception tidiness. But the level of security has the advantage that when there is a problem with one of the nodes, the x topology still has another path to be able to send data to the receiver.

Author(s):  
Suhartono Suhartono ◽  
Ratih Indri Hapsari ◽  
Mohamad Zenurianto ◽  
Ikrar Hanggara

Electricity is the main source of energy in human life. The development of human life is greatly influenced by the presence of electrical energy. Therefore it is necessary to conduct research related to the generation of electrical energy on a small scale (micro). One alternative electricity generation by changing the motion energy is done by utilizing the flow of water. Water flow with low discharge and head is easily found in several places, especially small rivers or irrigation channels. Utilization of low flow head and discharge is a great potential to be able to produce small-scale (micro) electrical energy. In this research, modeling of low flow and low head discharge will be carried out to find out how much potential the electrical energy can generate. There are 3 experiments namely water power, whirlpool, high fall. Experiment 1 with a head of 50 meters found 1,414 watts of water power with a discharge rate of 17.3 liters/minute on a 1 "diameter pipe. In experiment 2 the performance of the tool could not produce a vortex flow according to the plan, because the cross-sectional area was not comparable to the basin's outer hole and only produced vertices at a depth of 10 cm flow and produced a vortex radius of 1 cm. In Experiment 3 the performance of the tool can run well the stability of the discharge generated from the sedative bath shows that the measured flow velocity is in accordance with the theoretical flow rate conditions. Ie the speed of flow increases due to high fall.


2012 ◽  
Vol 245 ◽  
pp. 255-260 ◽  
Author(s):  
Rudolf Jánoš ◽  
Mikuláš Hajduk ◽  
Ján Semjon ◽  
Ľuboslava Šidlovská

Wheels and legs are two widely accepted methodology used to move the moving platform to the ground. Wheels are human inventions, the rolls in a straight country excel in energy efficiency and speed of movement. Hybrid platform for integrating the benefits of legs and wheels with high mobility of both seems to be the "future" of mobile platforms for indoor and outdoor environment. This paper describes the design leg-wheel chassis for service robot.


2014 ◽  
Vol 881-883 ◽  
pp. 1233-1236
Author(s):  
Zhong Hua Wang

In this paper, ways of heat transfer through windows and doors between the indoor and outdoor environment in the northern area are summarized. And every heat transfer way is described by mathematical formula. On this basis, methods to improve the energy saving performance of exterior windows are put forward according to factors affecting heat transfer through windows. The first method is increasing solar radiation heat, and then reducing heat loss by infiltration, and increasing the thermal resistance as much as possible. Ideal form of energy-saving window is proposed based on compared windows with different material and thermal resistance.


2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.


2012 ◽  
Vol 6-7 ◽  
pp. 356-360
Author(s):  
Shao Yin Wang ◽  
Yi Yu ◽  
Guo Xin Zheng ◽  
Qing Feng Ding

We study the anti-interference performance of the 802.11 system when it works as Data Communication System (DCS) in Communication Based Train Control (CBTC). We first conduct extensive experiments on a 802.11b network to assess the ability on a lab test bed, then the outdoor experiments are also conducted. In the presence of jammer, we find that in each case of interference model, there exists a C/I threshold which determine the DCS-Access Point (DCS-AP) and DCS-Station Adapter (DCS-STA) communication performance. In the outdoor environment, different interference sources are adopted to investigate the data throughput value and other parameters of the DCS system under the critical state.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 786 ◽  
Author(s):  
Yida Zhu ◽  
Haiyong Luo ◽  
Qu Wang ◽  
Fang Zhao ◽  
Bokun Ning ◽  
...  

The widespread popularity of smartphones makes it possible to provide Location-Based Services (LBS) in a variety of complex scenarios. The location and contextual status, especially the Indoor/Outdoor switching, provides a direct indicator for seamless indoor and outdoor positioning and navigation. It is challenging to quickly detect indoor and outdoor transitions with high confidence due to a variety of signal variations in complex scenarios and the similarity of indoor and outdoor signal sources in the IO transition regions. In this paper, we consider the challenge of switching quickly in IO transition regions with high detection accuracy in complex scenarios. Towards this end, we analyze and extract spatial geometry distribution, time sequence and statistical features under different sliding windows from GNSS measurements in Android smartphones and present a novel IO detection method employing an ensemble model based on stacking and filtering the detection result by Hidden Markov Model. We evaluated our algorithm on four datasets. The results showed that our proposed algorithm was capable of identifying IO state with 99.11% accuracy in indoor and outdoor environment where we have collected data and 97.02% accuracy in new indoor and outdoor scenarios. Furthermore, in the scenario of indoor and outdoor transition where we have collected data, the recognition accuracy reaches 94.53% and the probability of switching delay within 3 s exceeds 80%. In the new scenario, the recognition accuracy reaches 92.80% and the probability of switching delay within 4 s exceeds 80%.


Sign in / Sign up

Export Citation Format

Share Document