scholarly journals The expression of CD44, CD90 and CD133 in response to cisplatin in hepatocellular cancer cells

2021 ◽  
Vol 19 (1) ◽  
pp. 18-22
Author(s):  
Yaprak Donmez Cakıl ◽  
◽  
Zeynep Gunes Ozunal ◽  
Damla Gokceoglu Kayalı ◽  
Ranan Gulhan Aktas ◽  
...  

Introduction. Cancer is a leading cause of mortality. Hepatocellular cancer is one of the malignancies associated with poor outcome and resistance to pharmacotherapy. Cancer stem cells (CSCs) contribute to resistance to therapy and hence lead to the treatment failure of tumors. Aim. This study aims to explore the expression of CSCs in response to cisplatin treatment in HepG2 hepatocellular cancer cell line. Material and methods. Cell proliferation test, CCK-8, was used to evaluate the cell proliferation following cisplatin treatment for 72 hours. The expressions of CSC markers CD44, CD90, and CD133 were assessed by flow cytometric analysis. Results. The results showed a dose-dependent decrease in cell proliferation and increased expression of CSC markers CD44 and CD90 in response to cisplatin. Conclusion. Understanding the roles of CSC markers may point to new targets and therapeutic strategies to predict and overcome cisplatin resistance.

2015 ◽  
Vol 43 (05) ◽  
pp. 915-925 ◽  
Author(s):  
Shou-Lun Lee ◽  
Hsien-Kuang Lee ◽  
Ting-Yu Chin ◽  
Ssu-Chieh Tu ◽  
Ming-Hsun Kuo ◽  
...  

Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program.


2003 ◽  
Vol 275 (1-2) ◽  
pp. 57-68 ◽  
Author(s):  
Xuan Duc Nguyen ◽  
Hermann Eichler ◽  
Alex Dugrillon ◽  
Christoph Piechaczek ◽  
Michael Braun ◽  
...  

Cytometry ◽  
1999 ◽  
Vol 35 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Ingrid Schmid ◽  
John Ferbas ◽  
Christel H. Uittenbogaart ◽  
Janis V. Giorgi

2013 ◽  
Vol 750-752 ◽  
pp. 1529-1532 ◽  
Author(s):  
Xing Yu Zhao ◽  
Lian Hai Jin ◽  
Dong Jun Wang ◽  
Bin Xu ◽  
Wei Zhang ◽  
...  

To explore the protective effects of salidroside against endogenous hydrogen peroxide (H2O2) -induced cytotoxicity in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (34μM) generated by glucose oxidase (GOX) with or without salidroside. MTT assays were performed, together with flow cytometric analysis using propidium (PI) label. The results indicated that salidroside could attenuate H2O2 induced cytotoxicity in EVC-304 cells in a dose-dependent pattern. Furthermore, flow cytometric analysis revealed that salidroside could also inhibited the G2/M arrest induced by endogenous hydrogen. The present study demonstrates that salidroside could inhibit endogenous hydrogen peroxide induced cytotoxicity of endothelial cells .


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2866-2866
Author(s):  
Hisayuki Yao ◽  
Eishi Ashihara ◽  
Rina Nagao ◽  
Shinya Kimura ◽  
Hideyo Hirai ◽  
...  

Abstract Abstract 2866 Poster Board II-842 Although new molecular targeting agents against multiple myeloma (MM) have been developed, MM still remains an incurable disease. It is important to continue to investigate new therapeutic agents based on the biology of MM cells. β-catenin is the downstream effector of Wnt signaling and it regulates genes implicated in malignant progression. We have demonstrated that blockade of Wnt/β-catenin signaling pathway inhibits the progression of MM by using RNA interference methods with an in vivo mouse model (Ashihara E, et al. Clin Cancer Res 15:2731, 2009.). In this study, we investigated the effects of AV-65, a novel inhibitor of the Wnt/β-catenin signaling pathway, on MM cells. The system to identify a series of small molecule compounds using a biomarker driven approach has been established. A gene expression biomarker signature reporting on the inhibition of Wnt/β-catenin signaling was generated upon treatment of a colon cancer cell line with β-catenin siRNA. This gene expression signatiure was used to screen a small molecule compound library to identify compounds which mimic knockdown of β-catenin and thus potentially inhibit the Wnt/β-catenin signaling pathway. One compound series, LC-363, was discovered from this screen and validated as novel Wnt/β-catenin signaling inhibitors (Strovel JW, et al. ASH meeting, 2007.). We investigated the inhibitory effects of AV-65, one of LC-363 compounds, on MM cell proliferation. AV-65 inhibited the proliferation of MM cells in a time- and a dose-dependent manner and the values of IC50 at 72 hrs were ranging from 11.7 to 82.1 nM. AV-65 also showed an inhibitory effect on the proliferation of RPMI8226/LR-5 melphalan-resistant MM cells (provided from Dr. William S. Dalton). In flow cytometric analysis, apoptotic cells were increased by AV-65 treatment in a time- and a dose-dependent manner. Western blotting analysis showed that β-catenin was ubiquitinated and that the expression of nuclear β-catenin diminished (Figure 1). Moreover, AV-65 suppressed T-cell factor transcriptional activities, resulting in the decrease of c-myc expression. Taken together, AV-65 promotes the degradation of β-catenin, resulting in the induction of apoptosis of MM cells. We next investigated the in vivo effects of AV-65 using an orthotopic MM-bearing mouse model. AV-65 inhibits the growth of MM cells and significantly prolongs the survival rates (Figure 2). In conclusion, AV-65 inhibited the proliferation of MM cells via inhibition of the Wnt/β-catenin signaling pathway. AV-65 is a promising therapeutic agent for treatment of MM. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Eun Suk Son ◽  
Se-Hee Kim ◽  
Young Ock Kim ◽  
Young Eun Lee ◽  
Sun Young Kyung ◽  
...  

Abstract Background Cervical cancer is the second-leading cause of cancer-related mortality in females. Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf ex Hook. f. is the most widely recognized medicinal herb for its remedial effects against inflammation, endocrine system dysfunctions, warts, chapped skin, rheumatism, and neuralgia and is also a nourishing food. Methods To investigate the activity of Coix lacryma-jobi sprout extract (CLSE) on cell proliferation in human cervical cancer HeLa cells, we conducted a Cell Counting Kit-8 (CCK-8) assay. Flow-cytometric analysis and western blot analysis were performed to verify the effect of CLSE on the regulation of the cell cycle and apoptosis in HeLa cells. Results We observed that CLSE significantly inhibited cell proliferation. Furthermore, CLSE dose-dependently promoted cell cycle arrest at the sub-G1/ S phase in HeLa cells, as detected by bromodeoxyuridine (BrdU) staining. The cell-cycle-arrest effects of CLSE in HeLa cells were associated with downregulation of cyclin D1 and cyclin-dependent kinases (CDKs) 2, 4, and 6. Moreover, CLSE induced apoptosis, as determined by flow-cytometric analysis and nuclear DNA fragmentation with Annexin V/propidium iodide (PI) and 4′6′-diamidino-2-phenylindole (DAPI) staining. Induction of apoptosis by CLSE was involved in inhibition of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) and upregulation of the apoptotic proteins p53, cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase-3, and cleaved caspase-8. Finally, we observed that CLSE inactivated the phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) pathways. Conclusions CLSE causes cell cycle arrest and apoptotic cell death through inactivation of the PI3K/AKT pathway in HeLa cells, suggesting it is a viable therapeutic agent for cervical cancer owing to its anticancer effects.


2004 ◽  
Vol 78 (5) ◽  
pp. 751-754 ◽  
Author(s):  
Andres Beiras-Fernandez ◽  
Sebastian Walther ◽  
Silvia Muenzing ◽  
Eckart Thein ◽  
Claus Hammer

Sign in / Sign up

Export Citation Format

Share Document