scholarly journals Neurotoxicity mechanism of Ochratoxin A

2021 ◽  
Vol 13 (2) ◽  
pp. 34-45
Author(s):  
Fahimeh Nourbakhsh ◽  
Elaheh Tajbakhsh

Mycotoxins, such as Ochratoxins, are widely distributed in nature and are common contaminants of human foodstuffs. Ochratoxins are a group of mycotoxins produced by a wide range of molds. Ochratoxin A (OTA), the most prominent member of this toxin family, is produced by various Aspergillus and Penicillium species. OTA is frequently found in foods such as cereals, oleaginous seeds, coffee, and meat products. This mycotoxin has been described as teratogenic, genotoxic, carcinogenic, and immunotoxic, and has been proven to be a potent neurotoxin. In the present study, the neurotoxicological perspective of OTA was reviewed and discussed. The main possible mechanisms of neurotoxicity are oxidative DNA, protein and lipid damage, and apoptosis. However, further studies are needed to conclude the exact neurotoxicity mechanism of OTA and find the approaches that reduce the neurotoxicity induced by OTA.

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
V. Koteswara Rao ◽  
B. Aruna ◽  
Md. Rafiyuddin ◽  
K. Narasimha Rao ◽  
S. Girisham ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Mahmoud E. Elsayed ◽  
Hany R. Hashem ◽  
Hazem Ramadan ◽  
Norhan S. Sheraba ◽  
...  

Abstract Background Meat-products are considered an enriched media for mycotoxins. This study aimed to investigate the prevalence of toxigenic Aspergillus species in processed meat samples, HPLC-quantitative measurement of aflatoxin B1 and ochratoxin A residues, and molecular sequencing of aflR1 and pks genes. One hundred and twenty processed beef meat specimens (basterma, sausage, and minced meat; n = 40 for each) were collected from Ismailia Province, Egypt. Samples were prepared for total mold count, isolation, and identification of Aspergillus species. All samples were analyzed for the production of both Aflatoxin B1 and Ochratoxin A mycotoxins by HPLC. Molecular identification of Aspergillus flavus and Aspergillus ochraceus was performed using PCR amplification of the internal transcribed spacer (ITS) region; furthermore, the aflR1 and pks genes were sequenced. Results The total mold count obtained from sausage samples was the highest one, followed by minced meat samples. The prevalence of A. flavus was (15%), (7.5%), and (10%), while the prevalence of A. ochraceus was (2.5%), (10%), and (0%) in the examined basterma, sausage, and minced meat samples, respectively. Using PCR, the ITS region was successfully amplified in all the tested A. flavus and A. ochraceus strains. Aflatoxin B1 was detected in six basterma samples (15%). Moreover, the ochratoxin A was detected only in four sausage samples (10%). The aflR1 and pks genes were amplified and sequenced successfully and deposited in the GenBank with accession numbers MF694264 and MF694264, respectively. Conclusions To the best of our knowledge, this is the first report concerning the HPLC-Molecular-based approaches for the detection of aflatoxin B1 and ochratoxin A in processed beef meat in Egypt. The production of aflatoxin B1 and ochratoxin A in processed meat constitutes a public health threat. Aflatoxin B1 is commonly associated with basterma samples. Moreover, ochratoxin A was detected frequently in sausage samples. The routine inspection of mycotoxins in processed meat products is essential to protect human consumers.


2021 ◽  
Author(s):  
Deepshikha Shahdeo ◽  
Azmat Ali Khan ◽  
Amer M Alanazi ◽  
Yun Suk Huh ◽  
Shruti Shukla ◽  
...  

Abstract Ochratoxin A (OTA) is one of the predominant mycotoxins that contaminate a wide range of food commodities. In the present study, a 36-mer aptamer was used as a molecular recognition element coupled with gold nanoparticles (AuNPs) for colorimetric detection of OTA in a microfluidic paper-based analytical device (µPADs). The µPADs consisted of three zones: control, detection, and sample, interconnected by channels. The biophysical characterizations of aptamer conjugated AuNPs were done by UV-vis spectroscopy (UV-vis), dynamic Light Scattering (DLS), and transmission electron microscopy (TEM). The developed colorimetric assay for OTA showed a limit of detection of 242, 545, and 95.69 ng/mL in water, corn, and groundnut, respectively. The HPLC detection method achieved acceptable coefficient in standard curves (r2 = 0.9995), better detection range, and recovery rates in spiked corn and groundnut samples as 43.61 ± 2.18% to 87.10 ± 1.82% and 42.01 ± 1.31% to 86.03 ± 2.64% after multiple sample extractions and cleanup steps. However, the developed µPADs analytical device had the potent ability to rapidly detect OTA without any extraction pre-requirement, derivatization, and cleanup steps, thus illustrating its feasibility in the animal health sector, agricultural, and food industries.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 111-112
Author(s):  
Thu Dinh

Abstract Fatty acids determine the physical and chemical properties of fats. Animal fats, regardless of species, have more saturated and monounsaturated than polyunsaturated fatty acids. The major fatty acids in meat are palmitic (16:0), stearic (18:0), palmitoleic (16:1), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids, among which oleic acid is the most predominant. Arachidonic acid (20:4 cis 5,8,11,14) is an essential fatty acid only found in animal fats and can be used as a quality control indicator in the fatty acid analysis. Fatty acid analysis has been traditionally performed by gas chromatography (GC) of volatile fatty acid derivatives, prominently the methyl esters, and flame ionization detection (FID), in which the carbon chain of fatty acids is degraded to the formylium ion CHO+. The FID is very sensitive and is the most widely used detection method for GC, providing a linear response, i.e., peak area, over a wide range of concentrations. Researchers have been used the FID peak area to calculate the percentages of fatty acids. However, the FID is a “carbon counter” and relies on the “equal per carbon” rule; therefore, at the same molar concentration, fatty acids with a different number of carbons produce different peak areas. The recent development of mass spectrometry technology has improved the specificity of fatty acid detection. Specific target and qualifier ions provide better identification and more accurate quantification of fatty acid concentrations. Although fatty acids can be identified through comparing ion fragmentation with various databases, authentic standards are needed for quantification purposes. Using mass spectrometry, more than 50 fatty acids have been identified in meat samples. Some branched-chain fatty acids may have flavor, safety, and shelf life implications in meat products.


2019 ◽  
Vol 102 (6) ◽  
pp. 1666-1672
Author(s):  
Manisha Dhanshetty ◽  
Kaushik Banerjee

Background: Mycotoxins such as aflatoxins (AFs) and ochratoxin A (OTA) can pose severe health hazards because of their toxicity. Given a wide range of food matrices susceptible to fungal infections and possible cooccurrence of mycotoxins at different concentrations, validated multimycotoxin and multimatrix methods are strongly warranted. Objective: The aim of this research was to develop a simple and fast ultra-high performance LC (UHPLC) fluorescence detection (FLD)–based method to simultaneously determine AFs (B1, G1, B2, and G2) and OTA and, furthermore, to carry out single-laboratory validation in a range of cereals and processed product matrices. Methods: The sample preparation involved homogenization and extraction with methanol–water (80 + 20). For cleanup, an aliquot (3 mL) was diluted with phosphate-buffered saline, loaded on an immunoaffinity column (AFLAOCHRA PREP®), and eluted with methanol (1 mL). The cleaned extract was diluted with 0.2% acetic acid (at a 1:1 ratio) before injection into an ultra-high performance liquid chromatograph. To perform simultaneous analysis of AFs and OTA, the FLD program was developed by switching the excitation wavelength in a single chromatographic run. Results: The method provided LOQs of 0.25 and 1 ng/g for AFs and OTA, respectively, without involving any derivatization. In rice, the recoveries of AFs ranged from 84 to 106%, whereas OTA had a recovery above 72%, with the repeatability relative SDs <12% for both analytes. The method was successfully applied to a range of naturally contaminated market samples. Conclusions: The method is suitable for regulatory testing because of its significant time and cost effectiveness and sensitivity in compliance with the regulatory maximum levels. Highlights: The study achieves high-throughput analysis of AFs and OTA in raw and processed cereals using simultaneous extraction, cleanup, and UHPLC-FLD. Method sensitivity complies with the regulatory maximum levels. Single-laboratory validation results meet analytical QC requirements.


Author(s):  
Basak Gokce Col ◽  
Sergen Tuggum ◽  
Seydi Yıkmış

The most commonly used meat preservation methods include cooling, freezing, drying, vacuum packing, and curing. Meat quality is impaired by a wide range of changes including physical, chemical, microbiological, and enzymatic reactions. Food manufacturers focus on processes that require fewer chemical additives to meet the increased demand of consumers and to obtain more natural, healthy, and nutritious meat products. Non-thermal food preservation methods are one of the new trends to minimise thermal effects on texture, nutritional value, and flavor losses of meats. The chapter focuses on two novel approaches; non-thermal (Pulsed Electric Field) and Atmospheric Pressure Cold Plasma (APCP) Technologies.


1964 ◽  
Vol 47 (5) ◽  
pp. 903-909
Author(s):  
Lester Hankin ◽  
Alphonse F Wickroski

Abstract A method has been devised for the determination of corn sirup added to processed meat products. The method is based on the quantitative determination of dextrin added to corn sirup. The dextrins are enzymatically hydrolyzed by α-amylase and β-amylase, and maltose is calculated as the difference in CuO2 found by copper reduction between a treated and an untreated aliquot. A correction factor was devised to determine the average amount of dextrin in corn sirup by testing a number of commercial sirups for their dextrin content and subjecting the data to statistical analysis. With this equation the method is applicable to a wide range of sirups. The method also permits the estimation of dextrose added to meats in excess of that included as one of the components of corn sirup.


Toxins ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 700 ◽  
Author(s):  
Randa Zeidan ◽  
Zahoor Ul-Hassan ◽  
Roda Al-Thani ◽  
Quirico Migheli ◽  
Samir Jaoua

Mycotoxins are secondary metabolites produced by certain filamentous fungi, causing human and animal health issues upon the ingestion of contaminated food and feed. Among the safest approaches to the control of mycotoxigenic fungi and mycotoxin detoxification is the application of microbial biocontrol agents. Burkholderia cepacia is known for producing metabolites active against a broad number of pathogenic fungi. In this study, the antifungal potential of a Qatari strain of Burkholderia cepacia (QBC03) was explored. QBC03 exhibited antifungal activity against a wide range of mycotoxigenic, as well as phytopathogenic, fungal genera and species. The QBC03 culture supernatant significantly inhibited the growth of Aspergillus carbonarius, Fusarium culmorum and Penicillium verrucosum in PDA medium, as well as A. carbonarius and P. verrucosum biomass in PDB medium. The QBC03 culture supernatant was found to dramatically reduce the synthesis of ochratoxin A (OTA) by A. carbonarius, in addition to inducing mycelia malformation. The antifungal activity of QBC03’s culture extract was retained following thermal treatment at 100 °C for 30 min. The findings of the present study advocate that QBC03 is a suitable biocontrol agent against toxigenic fungi, due to the inhibitory activity of its thermostable metabolites.


2016 ◽  
Vol 9 (4) ◽  
pp. 587-596 ◽  
Author(s):  
D.E. Marin ◽  
M. Motiu ◽  
G.C. Pistol ◽  
M.A. Gras ◽  
F. Israel-Roming ◽  
...  

Ochratoxins, are toxic fungal metabolites produced by certain moulds of the genera Aspergillus and Penicillium that grow on a wide range of raw food commodities. The most relevant toxin is ochratoxin A (OTA) and the European Commission has established guidance values for OTA concerning complementary and complete feeding stuff recommending that for pigs a maximum concentration of 0.05 mg/kg. These guidance values represent only a recommendation of the Commission and the establishment of a legal regulation needs additional toxicological data generated from farm animal experiments. The aim of this paper was to investigate the effect of OTA – at the recommended EU guidance value of 0.05 mg/kg – on liver health. For this purpose, twelve crossbred, weaned piglets were fed for 33 days a maize-soybean-meal-based diet contaminated or not with 0.05 mg/kg OTA. Blood plasma samples were collected at the end of this period and subjected to biochemical analyses, whereas liver samples were analysed for cytokine concentration (ELISA), enzyme activity and expression of selected genes (qRT-PCR) involved in liver metabolism. Exposure to OTA resulted in a significant decrease in the concentrations of total protein, albumin and nitric oxide in plasma, and interleukin-6 in the liver. OTA exposure also resulted in a significant increase of alanine aminotransferase and triglycerides in plasma and of superoxide dismutase in the liver. In conclusion, the administration of 0.05 mg/kg of OTA, to weaned piglets for a period of 33 days caused measurable hepatocellular injury in the toxin-exposed. Additional in vivo studies should be performed with larger numbers of animals in order to confirm our results and to provide robust data for the establishment of safe concentrations of OTA in swine feeds.


Sign in / Sign up

Export Citation Format

Share Document