scholarly journals Optimization of structure matrix of mold forms

Author(s):  
V. Pleskach ◽  
V. Olshanetskii

Purpose. Optimization of the method of design and calculation of the composite matrices of molds for the manufacture of products from powder materials. Research methods. Analysis of stresses in the walls of solid and composite thick-walled cylinders and their existing calculations. Results. The peculiarities of stress formation in the wall of solid and composite thick-walled cylinders under the action of internal pressure are investigated. The possibility of applying the obtained results to determine the strength and stiffness of the wall of the mold for the manufacture of products from powder materials is analyzed. Limitations in ensuring the strength of the matrix by only increasing its thickness are determined. It is shown that the use of a matrix composed of an inner cylinder and an outer holder allows to use optimal stress redistribution in the walls of such matrix in order to reduce the size and, accordingly, save materials for its manufacture. The possibility of using various, better adapted materials for the manufacture of the inner wall of the matrix and permiting the reduction of the cost of manufacturing the mold are analyzed. The method of calculation of stresses in dangerous points of walls of a matrix at an estimation of their strength and stiffness is generalized. Formulas for determination of the guaranteed tension which will provide effective redistribution of stresses in walls of the composite matrix under the set operating conditions are given. Scientific novelty. Approaches to the analysis of stresses in the walls of composite matrices of molds under the influence of internal pressure are optimized and generalized . Mathematical dependences are given, which make it possible to determine the optimal dimensions of mold elements at action of pressing pressure. Practical value. The principles of design and methods of calculation of composite matrices of molds for the manufacture of products from powder materials are proposed.  

Author(s):  
V. Pleskach ◽  
V. Ol’shanetskii

Purpose. Optimization of methods of design, calculation and use of slip bearings; elaboration of recommendations on the use of powder materials and lubricants for the production of slip bearings. Research methods. Analysis of existing calculations of slip bearings, of efficiency of the bearing under conditions of self-lubrication and features of using hydrodynamic lubrication theory for calculations of slip bearings in the presence of liquid lubrication. Results. The area of predominant application of slip bearings, their main elements are clarified and described; recommendations on the sizes of structural elements of bearings are given. The main types of slipping friction and their relationship with the bearing design and operating conditions are analyzed. The possible composition of powder materials for slip bearings, the interdependence of bearing porosity and the viscosity of the oil used to ensure the of its longevity is analyzed. Recommendations for the design of bearings in conditions of liquid friction are given. Generalized methodology for calculating the efficiency of slip bearings is proposed. Based on the theory of hydrodynamic lubrication, a method for calculating slip bearings for liquid lubrication conditions, which provides optimal operating conditions is proposed. Scientific novelty. Optimized selection of powder material and structure to improve lubrication conditions is proposed. The analysis of the influence of the chemical composition of the oil to ensure maximum adhesion of this oil with a bearing surface is resulted; the analysis of the influence of the chemical composition of the oil to ensure maximum adhesion of this oil with a bearing surface, as well as mathematical dependencies that make it possible to adjust the composition of the oil by adding specially selected microadditives is resulted. Generalized approaches to the method of calculation of powder slip bearings, which operating under different friction conditions are proposed. Practical value. Practical methods of designing and calculating slip bearings from powder materials are offered.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


2004 ◽  
Vol 50 (2) ◽  
pp. 83-90 ◽  
Author(s):  
A. Durán Moreno ◽  
B.A. Frontana-Uribe ◽  
R.M. Ramírez Zamora

The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
K. N. Lakshmikandhan ◽  
P. Sivakumar ◽  
R. Ravichandran ◽  
S. Arul Jayachandran

The strength of the composite deck slab depends mainly on the longitudinal shear transfer mechanism at the interface between steel and concrete. The bond strength developed by the cement paste is weak and causes premature failure of composite deck slab. This deficiency is effectively overcame by a shear transferring mechanism in the form of mechanical interlock through indentations, embossments, or fastening studs. Development of embossment patterns requires an advanced technology which makes the deck profile expensive. Fastening studs by welding weakens the joint strength and also escalates the cost. The present investigation is attempted to arrive at a better, simple interface mechanism. Three types of mechanical connector schemes are identified and investigated experimentally. All of the three shear connector schemes exhibited full shear interaction with negligible slip. The strength and stiffness of the composite slabs with shear connectors are superior about one and half time compared to these of the conventional reinforced concrete slabs and about twice compared to these of composite slabs without mechanical shear connectors. The scheme2 and scheme3 shear connector mechanisms integrate deck webs and improve strength and stiffness of the deck, which can effectively reduce the cost of formworks and supports efficiently.


1997 ◽  
Vol 119 (1) ◽  
pp. 45-49 ◽  
Author(s):  
N. T. Davis ◽  
V. G. McDonell ◽  
G. S. Samuelsen

To mitigate the environmental impact of next-generation gas turbine combustors, the emission performance at each condition throughout the load duty cycle must be optimized. Achieving this with a single combustor geometry may not be possible. Rather, the mixing processes and airflow splits must likely be modified as a function of load in order to (1) abate the emission of oxides of nitrogen, (2) maintain combustion efficiency, and (3) preclude lean blow-out over the entire duty cycle. The present study employs a model combustor to evaluate combustor performance as a function of load and explore the application of variable geometry to optimize performance at each condition. A parametric variation of flow splits is conducted at each load condition by independently adjusting the primary jet area and swirler choke area. The resultant impact on combustor performance is measured and quantified in terms of a cost function. The cost function is defined to increase with improving combustor performance (e.g., improving combustion efficiency and/or declining NOx emissions). Cycle operating conditions are found to alter the response mappings of efficiency and NOx. As a result, the optimal configuration of the combustor changes as the load is varied over the duty cycle. The results provide guidance on the application of active control.


2019 ◽  
Author(s):  
Pezhman Mohammadi ◽  
A. Sesilja Aranko ◽  
Christopher P. Landowski ◽  
Olli Ikkala ◽  
Kristaps Jaudzems ◽  
...  

Silk and cellulose are biopolymers that show a high potential as future sustainable materials.They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. Therein, a major challenge concerns balancing structure and properties in the assembly process. We used recombinant proteins with triblock architecture combining structurally modified spider silk with terminal cellulose affinity modules. Flow-alignment of cellulose nanofibrils and triblock protein allowed a continuous fiber production.The protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures to beta sheets. This gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials, and emphasize the key role of controlled assembly at multiple length scales for realization.<br>


2020 ◽  
Vol 2 ◽  
pp. 30-38
Author(s):  
Yukhym Hezentsvei ◽  
Dmytro Bannikov

In accordance with the recommendations of specialized professional literature, steel pyramidal-prismatic bunkers are projected for a service life of 20 years. However, in practice this term is often twice, or even three times lower. This is especially true for complicated operating conditions, in particular the effect of increased loads and low temperatures. Existing design techniques for such structures, both in European practice and the design practice of Ukraine and other CIS countries do not pay attention to these aspects. Therefore, in the practice of operation, the increased accident rate of steel bunker capacities has already become virtually a common occurrence. One of the possible ways to solve this problem is presented, which consists of using instead of traditional steels of ordinary strength with high plastic properties, steels of increased or high strength with reduced plastic properties. At the same time, clear theoretical recommendations are provided for choosing the right steel depending on the operating conditions, primarily when exposed to increased loads. The recommendations are presented in a form convenient for practical engineering applications. The proposed approach allows to reduce the material consumption of structures of this type on average according to theoretical estimates by 25-30% without reducing their bearing capacity. Their durability is also further enhanced by improving performance at low temperatures. Thus, the applied aspect of such a solution to this above problem is the possibility of increasing the overall reliability of steel bunker capacities, as well as reducing the cost of their periodic maintenance and repair work. A practical illustration of the presented approach is also given on the example of the design of bunkers of a bypass track for supplying charge materials for blast furnaces of one of the metallurgical plants of the northern location. As a result, this created the preconditions for monetary savings of about 0.5 million UAH in prices 2019 (about 20,000 USD)


Sign in / Sign up

Export Citation Format

Share Document