scholarly journals Optimal Carrier Concentration for High Thermoelectric Performance of Lead Substituted Bismuth Telluride in p-Type Doping

2018 ◽  
Vol 28 (2) ◽  
pp. 169
Author(s):  
Van Quang Tran

Bi\(_{2}\)Te\(_{3}\) and its alloys are the well-known state-of-the-art thermoelectric materials operating at around room temperature. With lead substituted, the newly formed quasi-binary compound PbBi\(_{4}\)Te\(_{7}\), shows relatively high electrical conductivity and Seebeck coefficient. In this report, we employed the solution of the Boltzmann Transport Equation in a constant relaxation-time approximation within a first-principles density-functional-theory calculation to explore the role of the electronic thermal conductivity, \(\kappa _{e}\), on the thermoelectric performance of the compound with p-type doping. Results show that \(\kappa _{e}\) increases drastically with the increases of both temperature and carrier concentration. Even the power factor has been found to be markedly improved with the increase of the carrier concentration, a rapid increase of \(\kappa _{e}\) emerges as a big hindrance to improve the dimensionless figure of merit, ZT, of the compound. This is responsible for the limit of ZT. The larger ZT is found in low temperatures and carrier concentrations. The highest ZT of about 0.48 occurs at 223 K and at the carrier concentration of \(6\times 10^{17}\)cm\(^{ - 3}\). At room temperature the maximum ZT is slightly smaller. We demonstrated that at a particular temperature to maximize the thermoelectric performance of the compound, the carrier concentration must be optimized. Results show that the compound with p-type doping is a promising thermoelectric materials operating at around room temperature.

Author(s):  
Tran Van Quang

Bismuth telluride and its related compounds are the state-of-the-art thermoelectric materials operating at room temperature. Bismuth telluride with Pb substituted, PbBi4Te7, has been found to be a new quasi-binary compound with an impressive high power factor. In this work, in the framework of density functional theory, we study the electronic thermal conductivity of the compound by employing the solution of Boltzmann Transport Equation in a constant relaxation-time approximation. The results show that the electronic thermal conductivity drastically increases with the increase of temperature and carrier concentration which have a detrimental effect on the thermoelectric performance. At a particular temperature, the competition between the thermal conductivity, the Seebeck coefficient and the electrical conductivity limits the thermoelectric figure of merit, ZT. The maximum ZT value of about 0.47 occurs at 520 K and at the carrier concentration of 5.0×1019cm-3 for n-type doping. This suggests that to maximize the thermoelectric performance of the compound, the carrier concentration must be carefully controlled and optimized whereas the best operating temperature is around 500 K.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Ali Mohebpour ◽  
Shobair Mohammadi Mozvashi ◽  
Sahar Izadi Vishkayi ◽  
Meysam Bagheri Tagani

AbstractEver since global warming emerged as a serious issue, the development of promising thermoelectric materials has been one of the main hot topics of material science. In this work, we provide an in-depth understanding of the thermoelectric properties of X$$_2$$ 2 YH$$_2$$ 2 monolayers (X=Si, Ge; Y=P, As, Sb, Bi) using the density functional theory combined with the Boltzmann transport equation. The results indicate that the monolayers have very low lattice thermal conductivities in the range of 0.09−0.27 Wm$$^{-1}$$ - 1 K$$^{-1}$$ - 1 at room temperature, which are correlated with the atomic masses of primitive cells. Ge$$_2$$ 2 PH$$_2$$ 2 and Si$$_2$$ 2 SbH$$_2$$ 2 possess the highest mobilities for hole (1894 cm$$^2$$ 2 V$$^{-1}$$ - 1 s$$^{-1}$$ - 1 ) and electron (1629 cm$$^2$$ 2 V$$^{-1}$$ - 1 s$$^{-1}$$ - 1 ), respectively. Si$$_2$$ 2 BiH$$_2$$ 2 shows the largest room-temperature figure of merit, $$ZT=2.85$$ Z T = 2.85 in the n-type doping ( $$\sim 3\times 10^{12}$$ ∼ 3 × 10 12  cm$$^{-2}$$ - 2 ), which is predicted to reach 3.49 at 800 K. Additionally, Si$$_2$$ 2 SbH$$_2$$ 2 and Si$$_2$$ 2 AsH$$_2$$ 2 are found to have considerable ZT values above 2 at room temperature. Our findings suggest that the mentioned monolayers are more efficient than the traditional thermoelectric materials such as Bi$$_2$$ 2 Te$$_3$$ 3 and stimulate experimental efforts for novel syntheses and applications.


2020 ◽  
Vol 8 (16) ◽  
pp. 7914-7924 ◽  
Author(s):  
Maud Einhorn ◽  
Benjamin A. D. Williamson ◽  
David O. Scanlon

State-of-the-art density functional theory is used to demonstrate that LaZnOP and LaZnOAs have great potential as earth-abundant p-type thermoelectric materials for high-temperature applications.


Author(s):  
Yuhong Huang ◽  
Xuanhong Zhong ◽  
Hongkuan Yuan ◽  
Hong Chen

Abstract Thermoelectric performance of MoSi2As4 monolayer is investigated using density functional theory combined with Boltzmann transport theoy. The maximal power factors of n- and p-type by PBE (HSE06) functional are 7.73 (48.31) and 32.84 (30.50) mW m-1 K-2 at the temperature of 1200 K, respectively. The lattice thermal conductivity is less than 30 W m-1 K-1 above 800 K. The thermoelectric figure of merit can reach 0.33 (0.58) and 0.90 (0.81) using PBE (HSE06) functional for n- and p-type under appropriate carrier concentration at 1200K, respectively. Thus, the p-type MoSi2As4 monolayer is predicted to be a potential candidate for high-temperature thermoelectric applications.


RSC Advances ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 2252-2257 ◽  
Author(s):  
Zichen Wei ◽  
Yang Yang ◽  
Chenyang Wang ◽  
Zhili Li ◽  
Lixian Zheng ◽  
...  

Ti substitution leads to enhanced thermoelectric performance of p-type Bi0.5Sb1.5Te3 due to carrier concentration regulation, alloy effect and anisotropic microstructure.


2012 ◽  
Vol 621 ◽  
pp. 167-171
Author(s):  
Tao Hua Liang ◽  
Shi Qing Yang ◽  
Zhi Chen ◽  
Qing Xue Yang

p-type Bi0.5Sb1.5Te3+xTe thermoelectric crystals with various percentages of Te (x = 0.00 wt.%–3.00 wt.%) excess were prepared by the gradient freeze method. By doping with different Te contents, anti-site defects, Te vacancies and hole carrier concentrations were controlled. The Seebeck coefficient, resistivity, thermal conductivity, carrier concentration, and mobility were measured. The relationships between the Te content and thermoelectric properties were investigated in detail. The results suggested that the thermoelectric figure of merit ZT of the Bi0.5Sb1.5Te3+0.09wt.% crystals was 1.36 near room temperature, the optimum carrier concentration was 1.25 × 1019 cm-3, and the mobility was 1480 cm2 V-1 S-1, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wan Yu Lyu ◽  
Min Hong ◽  
Wei Di Liu ◽  
Meng Li ◽  
Qiang Sun ◽  
...  

As a promising midtemperature thermoelectric material with both higher thermoelectric performance and mechanical property, Tellurium Antimony Germanium Silver (TAGS-x), written as (GeTe)x(AgSbTe2)1-x, especially (GeTe)0.85(AgSbTe2)0.15 (TAGS-85), has attracted wide attention. Herein, we innovatively use Nd doping to synergistically decrease the carrier concentration to the optimal level leading to enhanced dimensionless figure of merit, zT. Our density-functional theory calculation results indicate that Nd-doping reduced carrier concentration should be attributed to the enlargement of band gap. The optimized carrier concentration results in an ultrahigh power factor of ~32 μW cm-1 K-2 at 727 K in Ge0.74Ag0.13Sb0.11Nd0.02Te. Simultaneously, the lattice thermal conductivity of Ge0.74Ag0.13Sb0.11Nd0.02Te retained as low as ~0.5 at 727 K. Ultimately, a record-high zT of 1.65 at 727 K is observed in the Ge0.74Ag0.13Sb0.11Nd0.02Te. This study indicates rare-earth Nd doping is effective in boosting the thermoelectric performance of TAGS-85 and approached a record-high level via synergistic effect.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ning Wang ◽  
Menglu Li ◽  
Haiyan Xiao ◽  
Zhibin Gao ◽  
Zijiang Liu ◽  
...  

AbstractBand degeneracy is effective in optimizing the power factors of thermoelectric (TE) materials by enhancing the Seebeck coefficients. In this study, we demonstrate this effect in model systems of layered oxyselenide family by the density functional theory (DFT) combined with semi-classical Boltzmann transport theory. TE transport performance of layered LaCuOSe and BiCuOSe are fully compared. The results show that due to the larger electrical conductivities caused by longer electron relaxation times, the n-type systems show better TE performance than p-type systems for both LaCuOSe and BiCuOSe. Besides, the conduction band degeneracy of LaCuOSe leads to a larger Seebeck coefficient and a higher optimal carrier concentration than n-type BiCuOSe, and thus a higher power factor. The optimal figure of merit (ZT) value of 1.46 for n-type LaCuOSe is 22% larger than that of 1.2 for n-type BiCuOSe. This study highlights the potential of wide band gap material LaCuOSe for highly efficient TE applications, and demonstrates that inducing band degeneracy by cations substitution is an effective way to enhance the TE performance of layered oxyselenides.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4524
Author(s):  
Amin Nozariasbmarz ◽  
Daryoosh Vashaee

Depending on the application of bismuth telluride thermoelectric materials in cooling, waste heat recovery, or wearable electronics, their material properties, and geometrical dimensions should be designed to optimize their performance. Recently, thermoelectric materials have gained a lot of interest in wearable electronic devices for body heat harvesting and cooling purposes. For efficient wearable electronic devices, thermoelectric materials with optimum properties, i.e., low thermal conductivity, high Seebeck coefficient, and high thermoelectric figure-of-merit (zT) at room temperature, are demanded. In this paper, we investigate the effect of glass inclusion, microwave processing, and annealing on the synthesis of high-performance p-type (BixSb1−x)2Te3 nanocomposites, optimized specially for body heat harvesting and body cooling applications. Our results show that glass inclusion could enhance the room temperature Seebeck coefficient by more than 10% while maintaining zT the same. Moreover, the combination of microwave radiation and post-annealing enables a 25% enhancement of zT at room temperature. A thermoelectric generator wristband, made of the developed materials, generates 300 μW power and 323 mV voltage when connected to the human body. Consequently, MW processing provides a new and effective way of synthesizing p-type (BixSb1−x)2Te3 alloys with optimum transport properties.


Sign in / Sign up

Export Citation Format

Share Document