scholarly journals INITIAL ASSESSMENT OF SOME RELATED SOCIO-ECONOMIC PARAMETERS UNDER THE IMPACTS OF CLIMATE CHANGE AT DISTRICT 8 IN HO CHI MINH CITY

2018 ◽  
Vol 54 (2A) ◽  
pp. 214
Author(s):  
Nguyen Phu Bao

About 7.9 % of population is living in poverty at District 8, which is one of the most vulnerable areas to climate change in Ho Chi Minh City (HCMC). The impacts of climate change (CC) on some related socio-economic parameters at District 8 were assessed using analytic hierarchy process (AHP) and livelihood vulnerability index (LVI). For this, four Asian Development Bank’s criteria including public health, transport, energy, and water supply and drainage (WSD) were used. In addition, however, six World Bank’s criteria including land use, population, gross domestic product (GDP), urban expansion, agriculture and wetland were also used just for initially trying whether or to what extent they can be useful for such downscaled application. Results of this study show that the level of CC impacts on the residential areas is rather high, with an average LVI of 0.056. In addition, the results of AHP shown that the impact levels on the study fields are determined to follow a decreasing order as: first level group including energy, water supply and drainage, transport, and public health (with total score 0.22); the second level group including land use and wetland (with total score 0.14); the third level group including population and urban expansion (with total score 0.1); and at last the fourth level group including GDP and agriculture (with total score 0.09).

Water Policy ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Huiqing Han ◽  
Yuxiang Dong

Water supply is an important freshwater ecosystem service provided by ecosystems. Water shortages resulting from spatio-temporal heterogeneity of climate condition or human activities present serious problems in the Guizhou Province of southwest China. This study aimed to analyze the spatio-temporal changes of water supply service using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, explore how climate and land-use changes impact water supply provision, and discuss the impact of parameters associated with climate and land-use in the InVEST model on water supply in the region. We used data and the model to forecast trends for the year 2030 and found that water supply has been declining in the region at the watershed scale since 1990. Climate and land-use change played important roles in affecting the water supply. Water supply was overwhelmingly driven by the reference evapotranspiration and annual average precipitation, while the plant evapotranspiration coefficients for each land-use type had a relatively small effect. The method for sensitivity analysis developed in this study allowed exploration of the relative importance of parameters in the InVEST water yield model. The Grain-for-Green project, afforestation, and urban expansion control should be accelerated in this region to protect the water supply.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1612
Author(s):  
Manling Xiong ◽  
Ching-Sheng Huang ◽  
Tao Yang

Various models based on Budyko framework, widely applied to quantify the impacts of climate change and land use/cover change (LUCC) on runoff, assumed a fixed partition used to distinguish the impacts. Several articles have applied a weighting factor describing arbitrary partitions for developing a total differential Budyko (TDB) model and a complementary Budyko (CB) model. This study introduces the weighting factor into a decomposition Budyko (DB) model and applies these three models to analyze runoff variation due to the impacts in the upper-midstream Heihe River basin. The Pettitt test is first applied to determine a change point of a time series expanded by the runoff coefficient. The cause for the change point is analyzed. Transition matrix is adopted to investigate factors of LUCC. Results suggest the consistency of the CB, TDB, and present DB models in estimating runoff variation due to the impacts. The existing DB model excluding the weighting factor overestimates the impact of climate change on runoff and underestimates the LUCC impact as compared with the present DB model. With two extreme values of the weighting factor, runoff decrease induced by LUCC falls in the range of 65.20%–66.42% predicted by the CB model, 65.01%–66.57% by the TDB model, and 64.83%–66.85% by the present DB model. The transition matrixes indicate the major factors of LUCC are climate warming in the upstream of the study area and cropping in the midstream. Our work provides researchers with a better understanding of runoff variation due to climate change and LUCC.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xinli Ke ◽  
Feng Wu ◽  
Caixue Ma

Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast) model to simulate regional climate change. The results show that: (1) warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2) the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3) the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4) and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Pengyan Zhang ◽  
Yanyan Li ◽  
Wenlong Jing ◽  
Dan Yang ◽  
Yu Zhang ◽  
...  

Urbanization is causing profound changes in ecosystem functions at local and regional scales. The net primary productivity (NPP) is an important indicator of global change, rapid urbanization and climate change will have a significant impact on NPP, and urban expansion and climate change in different regions have different impacts on NPP, especially in densely populated areas. However, to date, efforts to quantify urban expansion and climate change have been limited, and the impact of long-term continuous changes in NPP has not been well understood. Based on land use data, night light data, NPP data, climate data, and a series of social and economic data, we performed a comprehensive analysis of land use change in terms of type and intensity and explored the pattern of urban expansion and its relationship with NPP and climate change for the period of 2000–2015, taking Zhengzhou, China, as an example. The results show that the major form of land use change was cropland to built-up land during the 2000–2015 period, with a total area of 367.51 km2 converted. The NPP exhibited a generally increasing trend in the study area except for built-up land and water area. The average correlation coefficients between temperature and NPP and precipitation and NPP were 0.267 and 0.020, respectively, indicating that an increase in temperature and precipitation can promote NPP despite significant spatial differences. During the examined period, most expansion areas exhibited an increasing NPP trend, indicating that the influence of urban expansion on NPP is mainly characterized by an evident influence of the expansion area. The study can provide a reference for Zhengzhou and even the world's practical research to improve land use efficiency, increase agricultural productivity and natural carbon sinks, and maintain low-carbon development.


2020 ◽  
Author(s):  
Joris Eekhout ◽  
Carolina Boix-Fayos ◽  
Pedro Pérez-Cutillas ◽  
Joris de Vente

<p>The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.</p>


2018 ◽  
Author(s):  
◽  
Quang Anh Phung

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] There is a need to raise our understanding of the impact of climate variability and change on hydrologic processes at the watershed scale. This is important, particularly for land managers and policymakers, in making better-informed decisions to assess adaptation strategies and to ensure that all sectors and populations can meet projected water demand. The Missouri Salt River Basin was chosen for this study due to its unique soil and agriculture-dominated land use. It is dominated by high clay content soils, making it sensitive to changes in the hydrologic condition. While numerous studies have examined hydrologic processes around this region, only a few have analyzed linkages between climate and the consequence of these changes to water allocation. One of the greatest potentials to maintain viable crop and livestock economies is to continue making gains in production efficiency, particularly in the area of rain-fed crops with the potential of increasing irrigation. Therefore, the objective of this study is to: (1) evaluate the impacts of potential climate and land use changes on the hydrologic components of the agriculturally dominated Salt River Basin; (2) evaluate the impact of climate change to agriculture management in this watershed, and determine if land use change can mitigate the climate change impacts on hydrological processes; (3) evaluate the impacts of potential climate changes on the water supply and demand of the Salt River Basin using integrated hydrological model and water allocation model approach; (4) determine if future water supply can meet the Salt River Basin catchment demands, and evaluate the future water competition among different sectors in the Salt River Basin using scenario based approach. Temperature and precipitation projections for two representative concentration pathways (RCP 4.5 moderate CO[2] level and RCP 8.5 high CO[2] level) were obtained from nineteen general circulation models statistically downscaled to better represent local conditions. These data, along with soils, land cover, land management, and topography, were input to the Soil and Water Assessment Tool (SWAT), a process-based hydrologic simulation model, to evaluate hydrologic impacts. Possible outcomes for the near (2020-2039) and far (2040-2059) future scenarios were determined. Combined climate and land use change scenarios showed distinct annual and seasonal variations in hydrological processes. Annual precipitation was projected to increase from 4% to 7%, which resulted in 14% more spring days with soil water content equal or exceeding field capacity in mid-century. However, 07 precipitation was projected to decrease -- a critical factor for crop growth. Higher temperatures led to increased potential vapotranspiration during the growing season, resulting in an increased need for irrigation by 38 mm. Analysis from multiple land use scenarios indicated that converting crop and pasture land to forest coverage can potentially mitigate the effects of climate change on streamflow, thus insuring future water availability. Using hydrologic output simulations from SWAT, evaluation of water allocation strategies was performed using the water evaluation and planning (WEAP) model. By selecting priority water use strategies, WEAP enabled review of potential conflicts among users through scenario-based approaches. Operating on the principle of water balance accounting, a range of inter-related water issues facing water users, including multiple water sources, sectoral demand analyses, water conservation, water allocation priorities, and general reservoir operations, were evaluated. For this study, scenarios with different rate of irrigation expansion for crop areas were evaluated. The Ag Census data from 1997, 2002, and 2007 were analyzed to obtain the historical reported numbers of livestock in each county within the watershed. The historical livestock numbers combined with USDA agricultural projections to 2027 were used to project inventory for 2060. The results indicated that future water shortages will become more prominent in the SRB under projected climate conditions. Without any change irrigation area, the future unmet could double as a consequence of climate change from 3 million m3 to 6 million m3. Increased irrigation equal 10% of crop land results in 38.5 million m3 of unmet water demand. If water from Mark Twain can be withdrawn for agriculture purposes, the unmet demand would lower by 30% compared with the baseline period. However, under prolonged drought period, the impact of the Mark Twain Lake is limited. Finally, under all considered scenarios public water supply is not a source of water vulnerability in this region.


1999 ◽  
Vol 30 (2) ◽  
pp. 129-146 ◽  
Author(s):  
N. R. Nawaz ◽  
A. J. Adeloye ◽  
M. Montaseri

In this paper, we report on the results of an investigation into the impacts of climate change on the storage-yield relationships for two multiple-reservoir systems, one in England and the other in Iran. The impact study uses established protocol and obtains perturbed monthly inflow series using a simple runoff coefficient approach which accounts for non-evaporative losses in the catchment, and a number of recently published GCM-based scenarios. The multi-reservoir analysis is based on the sequent-peak algorithm which has been modified to analyse multiple reservoirs and to accommodate explicitly performance norms and reservoir surface fluxes, i.e. evaporation and rainfall. As a consequence, it was also possible to assess the effect of including reservoir surface fluxes on the storage-yield functions. The results showed that, under baseline conditions, consideration of net evaporation will require lower storages for the English system and higher storages for the Iranian system. However, with perturbed hydroclimatology different impacts were obtained depending on the systems' yield and reliability. Possible explanations are offered for the observed behaviours.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Jevtic ◽  
C Bouland

Abstract Public health professionals (PHP) have a dual task in climate change. They should persuade their colleagues in clinical medicine of the importance of all the issues covered by the GD. The fact that the health sector contributes to the overall emissions of 4.4% speaks to the lack of awareness within the health sector itself. The issue of providing adequate infrastructure for the health sector is essential. Strengthening the opportunities and development of the circular economy within healthcare is more than just a current issue. The second task of PHP is targeting the broader population. The public health mission is being implemented, inter alia, through numerous activities related to environmental monitoring and assessment of the impact on health. GD should be a roadmap for priorities and actions in public health, bearing in mind: an ambitious goal of climate neutrality, an insistence on clean, affordable and safe energy, a strategy for a clean and circular economy. GD provides a framework for the development of sustainable and smart transport, the development of green agriculture and policies from field to table. It also insists on biodiversity conservation and protection actions. The pursuit of zero pollution and an environment free of toxic chemicals, as well as incorporating sustainability into all policies, is also an indispensable part of GD. GD represents a leadership step in the global framework towards a healthier future and comprises all the non-EU members as well. The public health sector should consider the GD as an argument for achieving goals at national levels, and align national public health policies with the goals of this document. There is a need for stronger advocacy of health and public-health interests along with incorporating sustainability into all policies. Achieving goals requires the education process for healthcare professionals covering all of topics of climate change, energy and air pollution to a much greater extent than before.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 762
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Zhao Liu ◽  
Shanshan Chang ◽  
Yonghua Zhao ◽  
...  

The environment of the urban fringe is complex and frangible. With the acceleration of industrialization and urbanization, the urban fringe has become the primary space for urban expansion, and the intense human activities create a high risk of potentially toxic element (PTE) pollution in the soil. In this study, 138 surface soil samples were collected from a region undergoing rapid urbanization and construction—Weinan, China. Concentrations of As, Pb, Cr, Cu, and Ni (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) and Hg (Atomic Fluorescence Spectrometry, AFS) were measured. The Kriging interpolation method was used to create a visualization of the spatial distribution characteristics and to analyze the pollution sources of PTEs in the soil. The pollution status of PTEs in the soil was evaluated using the national environmental quality standards for soils in different types of land use. The results show that the content range of As fluctuated a small amount and the coefficient of variation is small and mainly comes from natural soil formation. The content of Cr, Cu, and Ni around the automobile repair factory, the prefabrication factory, and the building material factory increased due to the deposition of wear particles in the soil. A total of 13.99% of the land in the study area had Hg pollution, which was mainly distributed on category 1 development land and farmland. Chemical plants were the main pollution sources. The study area should strictly control the industrial pollution emissions, regulate the agricultural production, adjust the land use planning, and reduce the impact of pollution on human beings. Furthermore, we make targeted remediation suggestions for each specific land use type. These results are of theoretical significance, will be of practical value for the control of PTEs in soil, and will provide ecological environmental protection in the urban fringe throughout the urbanization process.


Sign in / Sign up

Export Citation Format

Share Document