The Impact of Climate Change on Storage-Yield Curves for Multi-Reservoir Systems

1999 ◽  
Vol 30 (2) ◽  
pp. 129-146 ◽  
Author(s):  
N. R. Nawaz ◽  
A. J. Adeloye ◽  
M. Montaseri

In this paper, we report on the results of an investigation into the impacts of climate change on the storage-yield relationships for two multiple-reservoir systems, one in England and the other in Iran. The impact study uses established protocol and obtains perturbed monthly inflow series using a simple runoff coefficient approach which accounts for non-evaporative losses in the catchment, and a number of recently published GCM-based scenarios. The multi-reservoir analysis is based on the sequent-peak algorithm which has been modified to analyse multiple reservoirs and to accommodate explicitly performance norms and reservoir surface fluxes, i.e. evaporation and rainfall. As a consequence, it was also possible to assess the effect of including reservoir surface fluxes on the storage-yield functions. The results showed that, under baseline conditions, consideration of net evaporation will require lower storages for the English system and higher storages for the Iranian system. However, with perturbed hydroclimatology different impacts were obtained depending on the systems' yield and reliability. Possible explanations are offered for the observed behaviours.

Significance The extreme cold comes as the province is still dealing with the damage caused by unprecedented levels of heat and wildfires last summer and then record levels of rainfall and flooding in November. Its experience has focused attention on Canada’s wider vulnerability to the impact of shifting weather patterns and climate change. Impacts The natural resource sectors that are vital to Canada’s economy face an increasingly difficult environment for extraction. Indigenous peoples across the country will see their traditional ways of life further disrupted by climate change. The increasingly evident impacts of climate change on day-to-day life will see voters demand greater action from government. Significant investment in green initiatives, clean energy and climate resiliency initiatives will boost green industries.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2201 ◽  
Author(s):  
Feng Zeng ◽  
Ming-Guo Ma ◽  
Dong-Rui Di ◽  
Wei-Yu Shi

Separating the impact of climate change and human activities on runoff is an important topic in hydrology, and a large number of methods and theories have been widely used. In this paper, we review the current papers on separating the impacts of climate and human activities on runoff, summarize the progress of relevant research methods and applications in recent years, and discuss future research needs and directions.


Author(s):  
MA Islam ◽  
SK Paul

The objective of this research is to evaluate people’s perception on vulnerabilities of agriculture and to explore effective adaptation options with identifying the underlying demographic, socio-economic and other relevant variables that influence the adaptation strategies in the sea level rise (SLR) hazard induced coastal areas of Bangladesh. The study finds that climate change and induced SLR are emerging threats to coastal agriculture of Bangladesh; hence, farmers are applying different adaptation strategies to reduce the vulnerabilities of coastal agriculture. Selection of effective adaptation strategies to vulnerabilities of agriculture depends not only on the magnitude, intensity and the impacts of climate change and SLR, but also perceptions and types of farmer, land, educational level, indigenous knowledge about adaptation, locational advantages, external support, community awareness and sharing of different effective mechanisms among the farmers. Effective adaptation strategies with high perceptions have significant influence to reduce the vulnerabilities of agriculture considering the adverse impacts of climate change and SLR. In time of extreme climatic hazards when a great loss in agriculture hamper the coastal agrobased economy, different effective indigenous local adaptation strategies through farmer awareness and community co-operation become vital for minimizing the impact of climatic hazards and reducing the vulnerabilities of coastal agriculture.Int. J. Agril. Res. Innov. & Tech. 8 (1): 70-78, June, 2018


2019 ◽  
Vol 3 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Shlomit Paz

Abstract One of the main impacts of climate change on health is the influence on vector-borne diseases (VBDs). During the last few years, yearly outbreaks of the West Nile virus (WNV) have occurred in many locations, providing evidence of ongoing transmission. Currently, it is the most widely distributed arbovirus in the world. Increases in ambient temperature have impacts on WNV transmission. Indeed, clear associations were found between warm conditions and WNV outbreaks in various areas. The impact of changes in rainfall patterns on the incidence of the disease is influenced by the amount of precipitation (increased rainfall, floods or droughts), depending on the local conditions and the differences in the ecology and sensitivity of the species of mosquito. Predictions indicate that for WNV, increased warming will result in latitudinal and altitudinal expansions of regions climatically suitable for transmission, particularly along the current edges of its transmission areas. Extension of the transmission season is also predicted. As models show that the current climate change trends are expected to continue, it is important to reinforce WNV control efforts and increase the resilience of population health. For a better preparedness, any assessment of future transmission of WNV should consider the impacts of the changing climate.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1612
Author(s):  
Manling Xiong ◽  
Ching-Sheng Huang ◽  
Tao Yang

Various models based on Budyko framework, widely applied to quantify the impacts of climate change and land use/cover change (LUCC) on runoff, assumed a fixed partition used to distinguish the impacts. Several articles have applied a weighting factor describing arbitrary partitions for developing a total differential Budyko (TDB) model and a complementary Budyko (CB) model. This study introduces the weighting factor into a decomposition Budyko (DB) model and applies these three models to analyze runoff variation due to the impacts in the upper-midstream Heihe River basin. The Pettitt test is first applied to determine a change point of a time series expanded by the runoff coefficient. The cause for the change point is analyzed. Transition matrix is adopted to investigate factors of LUCC. Results suggest the consistency of the CB, TDB, and present DB models in estimating runoff variation due to the impacts. The existing DB model excluding the weighting factor overestimates the impact of climate change on runoff and underestimates the LUCC impact as compared with the present DB model. With two extreme values of the weighting factor, runoff decrease induced by LUCC falls in the range of 65.20%–66.42% predicted by the CB model, 65.01%–66.57% by the TDB model, and 64.83%–66.85% by the present DB model. The transition matrixes indicate the major factors of LUCC are climate warming in the upstream of the study area and cropping in the midstream. Our work provides researchers with a better understanding of runoff variation due to climate change and LUCC.


2020 ◽  
Author(s):  
Ali Feizi ◽  
Bahar Razavi

<p>Climate change represents a key challenge to the sustainability of global ecosystems and human prosperity in the twenty-first century. The impacts of climate change combined with natural climate variability are predominantly adverse, and often exacerbate other environmental challenges such as degradation of ecosystems, loss of biodiversity, and air, water and land pollution. Besides, rapid industrialization and increasing adaption of agrochemical based crop production practices since green revolution have considerably increased the heavy metal contaminations in the environment.</p><p>Assessing the impacts of climate change on our planet and addressing risks and opportunities is essential for taking decisions that will remain robust under future conditions, when many climate change impacts are expected to become more significant.</p><p>Here, we established a review survey to assess the impact of biochar amendment and agroforstry system on CO<sub>2</sub> sequestration and methaloid remediation.</p><p>Our data base showed that Agroforestry-based solutions for carbon dioxide capture and sequestration for climate change mitigation and adaptation in long-term is more practical and realistic options for a sustainable ecosystem and decreasing negative effect of climate change. This was more supported in arid and semi-arid regions as well as area with saline and alkaline soil (20%).</p><p>From a soil remediation standpoint, the general trend has been shifting from reduction of the total concentration to reduction of the physic-chemically and/or biologically available fractions of metals. This regulatory shift represents a tremendous saving in remediation cost. While metals are not degradable, their speciation and binding with soil through biochar amending reduced their solubility, mobility, and bioavailability. While agroforestry showed high efficiency in C sequestration (32%), biochar amendment raveled significant mitigation in heavymetals bioavailability (42%). However, studies which coupled both approaches are limited. Thus, we conclude that combined Agroforestry and biochar amendment regulates C sequestration and metalloids remediation more efficiently.</p>


2016 ◽  
Vol 8 (1) ◽  
pp. 142-164 ◽  
Author(s):  
Philbert Luhunga ◽  
Ladslaus Chang'a ◽  
George Djolov

The IPCC (Intergovernmental Panel on Climate Change) assessment reports confirm that climate change will hit developing countries the hardest. Adaption is on the agenda of many countries around the world. However, before devising adaption strategies, it is crucial to assess and understand the impacts of climate change at regional and local scales. In this study, the impact of climate change on rain-fed maize (Zea mays) production in the Wami-Ruvu basin of Tanzania was evaluated using the Decision Support System for Agro-technological Transfer. The model was fed with daily minimum and maximum temperatures, rainfall and solar radiation for current climate conditions (1971–2000) as well as future climate projections (2010–2099) for two Representative Concentration Pathways: RCP 4.5 and RCP 8.5. These data were derived from three high-resolution regional climate models, used in the Coordinated Regional Climate Downscaling Experiment program. Results showed that due to climate change future maize yields over the Wami-Ruvu basin will slightly increase relative to the baseline during the current century under RCP 4.5 and RCP 8.5. However, maize yields will decline in the mid and end centuries. The spatial distribution showed that high decline in maize yields are projected over lower altitude regions due to projected increase in temperatures in those areas.


Author(s):  
Mohamed Alboghdady ◽  
Salah E. El-Hendawy

Purpose The purpose of this study is to analyze the impact of climate change and variability on agricultural production in Middle East and North Africa region (MENA) where the deleterious impacts of climate change are generally projected to be greatest. Design/methodology/approach The study used a production function model using Fixed Effect Regression (FER) analysis and then using marginal impact analysis to assess the impact of climate change and variability on agricultural production. Therefore, the study utilized panel data for the period 1961-2009 pooled from 20 countries in MENA region. Findings Results showed that 1 per cent increase in temperature during winter resulted in 1.12 per cent decrease in agricultural production. It was also observed that 1 per cent increase in temperature variability during winter and spring resulted in 0.09 and 0.14 per cent decrease in agricultural production, respectively. Results also indicated that increasing precipitation during winter and fall season and precipitation variability during winter and summer seasons had negative impact. The estimated parameters of square temperature and precipitation indicated that climate change has significant nonlinear impacts on agricultural production in MENA region. Originality/value Despite there are many studies on the impact of climate change on agricultural production, there is a lack of publications to address the economic impact of both climate change and variability on agricultural production in MENA region. Thus, these results are more comprehensive and more informative to policymakers than the results from field trials.


2014 ◽  
Vol 65 (12) ◽  
pp. 1267 ◽  
Author(s):  
Wenxiang Wu ◽  
Qian Fang ◽  
Quansheng Ge ◽  
Mengzi Zhou ◽  
Yumei Lin

Global temperatures are rising, and concerns about the response of agricultural production to climate change are increasing. Adaptation is a key factor that will shape the severity of impacts of future climate change on food production. Based on actual meteorological, soil and agricultural management data at site scale, the CERES-Rice model, combined with the Regional Climate Model (RCM)-PRECIS, was used to simulate both the effects of climate change on rice yields and the efficacy of adaptive options in Northeast China. The impact simulation showed that rice yield changes ranged from +0.1% to –44.9% (A2 scenario) and from –0.3% to –40.1% (B2 scenario) without considering CO2 fertilisation effects. When considering CO2 fertilisation effects, rice yield reductions induced by temperature increases were decreased at all sites. The CO2 fertilisation effects may partly offset the negative impacts of climate change on rice yields. Adaptive option results revealed that the adverse impacts of climate change on rice yields could be mitigated by advancing the planting dates, transplanting mid–late-maturing rice cultivars to replace early-maturing ones, and breeding new rice cultivars with high thermal requirements. Our findings provide insight into the possible impacts of climate change on rice production, and we suggest which adaptive strategies could be used to cope with future climate change, thus providing evidence-based suggestions for government policy on adaptive strategies.


2020 ◽  
Vol 3 (4) ◽  
Author(s):  
Naveen P Singh ◽  
Bhawna Anand ◽  
S K Srivastava ◽  
K V Rao ◽  
S K Bal ◽  
...  

Thestudy attempts to estimateand predict climate impact on crop yieldsusing future temperature projections under two climate emissions scenarios of RCP 4.5 and 8.5 for threedifferent time periods (2030s, 2050s and 2080s) across Agro-climatic zones (ACZ) of India.During the period 1966-2011, a significant rise was observed in both the annual mean maximum and minimum temperature across ACZs. Rainfall recorded an annual decline in Himalayan Regions and Gangetic Plains and a rise in Coastal Regions, Plateau & Hills and Western Dry Region.Our results showedhigh heterogeneity in climate impact onkharif and rabi crop yields (with both negative and positive estimates) across ACZs.It was found that rainfall had a positive effect on most of crop yields, but was not sufficient enough to counterbalance the impact of temperature.Changes in crop yield were more pronounced forhigheremission scenario of RCP 8.5. Thus, it was evident that the relative impacts of climate change and the associated vulnerability varyby ACZs, hence comprehensive crop and region-specific adaptation measures should be emphasized that helps in enhancing resilience of agricultural system in short to medium term. 


Sign in / Sign up

Export Citation Format

Share Document