scholarly journals Degradation of chlorobenzene and 2-chlorotoluene by immobilized bacteria strains Comamonas testosterone kt5 and Bacillus subtilis dkt

2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Ha Danh Duc ◽  
Nguyen Thi Oanh

Chlorobenzenes and chlorotoluenes have been used to produce a number of industrial products. They are toxic and widely detected in environments due to human contributory negligence. In this article, the mixed culture of a toluenes-degrading bacterial strain, Comamonas testosterone KT5 (a Gram-positive, catalase-positive bacterium) and a chlorobenzenes-degrading bacterial strain, Bacillus subtilis DKT (a Gram-negative soil bacterium) effectively degraded both chemical compounds co-contaminating in liquid media. In addition, the degradations of mixed compounds by biofilm, bacteria immobilized in polyurethane foam (PUF) and alginate were determined. The results showed that the degradation of both compounds by cells in alginate was significantly higher than that by suspended cells. Moreover, cells immobilized in these materials showed lower adverse effects than those of non-immobilized cells for long-term storage. For examples, the degradation rates for chlorobenzine and 2-chlorotoluene by resting cells reduced by 39.5% and 37.3% after storage for 4 months at 4°C, while the degradation rates by immobilized cells decreased by from 16.3% to 19.8% respectively. 

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 738 ◽  
Author(s):  
Oksana Lastochkina ◽  
Liudmila Pusenkova ◽  
Darya Garshina ◽  
Ruslan Yuldashev ◽  
Irina Shpirnaya ◽  
...  

The effect of endophytic Bacillus subtilis (strains 10-4, 26D) and their compositions with salicylic acid (SA) on some resistance and quality traits of stored potatoes infected with Fusarium dry rot were studied. The experiments were carried out on hydroponically grown Solanum tuberosum L. tubers that were infected before storage with Fusarium oxysporum and coated with B. subtilis 10-4, 26D with and without exogenous SA, and then stored for six months. It has been shown that 10-4, 26D, 10-4 + SA, and 26D + SA reduced in different levels (up to 30–50%) the incidence of F. oxysporum-caused dry rot (with the highest effect for 10-4 + SA). SA notably enhanced the positive effect of 10-4, while for 26D, such an effect was not observed. All of the tested treatments increased amylase (AMY) and AMY inhibitors activity in infected tubers, while decreased Fusarium-induced protease activity (except in the case of 10-4 + SA, which promoted a slight increase) was revealed. 10-4, 26D, and their compositions with SA decreased (in different degrees) the pathogen-caused lipid peroxidation, proline, and reducing sugars accumulation in potatoes after long-term storage. It was also discovered 10-4 and 26D, regardless of SA presence, decrease pathogen-induced glycoalkaloids α-Solanine and α-Chaconine accumulation and preserved increased levels of starch and total dry matter in infected stored potatoes. The findings indicate endophytic B. subtilis and its compositions with SA is a promising eco-friendly and bio-safe approach to cope with postharvest decays of potato during long-term storage; however, when developing preparations-compositions it should take into account the strain-dependent manner of B. subtilis action together with SA.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 326 ◽  
Author(s):  
Olga Senko ◽  
Marina Gladchenko ◽  
Olga Maslova ◽  
Elena Efremenko

The aim of this paper is to demonstrate the possibilities of anaerobic sludge cells immobilized into poly(vinyl alcohol) cryogel for the methanogenic conversion of various lignocellulosic waste and other media containing antibiotics (ampicillin, kanamycin, benzylpenicillin) or pesticides (chlorpyrifos or methiocarb and its derivatives). It was established that the immobilized cells of the anaerobic consortium can be stored frozen for at least three years while preserving a high level of metabolic activity. The cells after the long-term storage in an immobilized and frozen state were applied for the methanogenesis of a wide number of wastes, and an increase in both methane yield and methane portion in the produced biogas as compared to the conventionally used suspended anaerobic sludge cells, was ensured. It was shown that the “additional” introduction of bacterial Clostridium acetobutylicum, Pseudomonas sp., Enterococcus faecalis cells (also immobilized using same support) improves characteristics of methanogenesis catalyzed by immobilized anaerobic sludge.


1998 ◽  
Vol 45 (2) ◽  
pp. 621-626 ◽  
Author(s):  
J Stano ◽  
P Nemec ◽  
L Bezáková ◽  
D Kákoniová ◽  
P Kovács ◽  
...  

Cell suspensions of gherkin (Cucumis sativus L.) were permeabilized by Tween-80, and immobilized by glutaraldehyde. Beta-galactosidase showed pH optimum at 4.9 and temperature optimum at 58 degrees C. The enzyme catalysed hydrolysis was linear for 3 h with 60-68% conversion of the substrate. The cells characterized by high beta-galactosidase activity and stability on long-term storage showed valuable technological properties.


2018 ◽  
Vol 39 (3) ◽  
pp. 141 ◽  
Author(s):  
Inna P Solyanikova ◽  
Natalia E Suzina ◽  
Ludmila A Golovleva

Years of research has shown that actinobacteria, including Rhodococcus, Gordonia, Arthrobacter, Microbacteria, play an important role in cleaning up sites contaminated by persistent organic pollutants. Under special conditions, actinobacteria of different genera are able to form specific forms, cyst-like resting cells (CLC), which maintain the viability during long-term storage (for at least 5–6 years, our unpublished results). These cells quickly germinate when conditions become favourable for growth. As a result, actinobacteria can be used as a basis for creating highly efficient biological preparations for cleaning up the soil with high levels of toxic contaminants such as (chloro)phenols, (chloro)biphenyls, polycyclic hydrocarbons, oil1.


Author(s):  
Zakiryaeva Saidakhon Ikramovna

The phytohormonal activity of free and immobilized cells of B. subtilis BS-80, B. licheniformis BL-83, P. polymyxa PP-113 and P. amylolyticus PA-118 on phosphate flour have been studied. It was found that immobilized cells more actively synthesized IAA and gibberellins in comparison with free cells. The data obtained indicates that the phytohormonal activity of the salt-resistant cells of cotton rhizobacteria can be kept much better in the immobilized form than in the free form (in a refrigerator on jambs).


2022 ◽  
Vol 14 (2) ◽  
pp. 661
Author(s):  
Olga Senko ◽  
Nikolay Stepanov ◽  
Olga Maslova ◽  
Elena Efremenko

It was found that immobilization of cells in poly(vinyl alcohol) (PVA) cryogel can be successfully applied for concurrent cryoimmobilization, cryoconservation and long-term storage of the cells of various phototrophic microorganisms (green and red microalgae, diatoms and cyanobacteria). For the first time, it was shown for 12 different immobilized microalgal cells that they can be stored frozen for at least 18 months while retaining a high level of viability (90%), and can further be used as an inoculum upon defrosting for cell-free biomass accumulation. Application of cryoimmobilized Chlorella vulgaris cells as inocula allowed the loading of a high concentration of the microalgal cells into the media for free biomass accumulation, thus increasing the rate of the process. It was shown that as minimum of 5 cycles of reuse of the same immobilized cells as inocula for cell accumulation could be realized when various real wastewater samples were applied as media for simultaneous microalgae cultivation and water purification.


2014 ◽  
Vol 81 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Hirokazu Suzuki ◽  
Jyumpei Kobayashi ◽  
Keisuke Wada ◽  
Megumi Furukawa ◽  
Katsumi Doi

ABSTRACTThermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophileGeobacillus kaustophilusHTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed thatG. kaustophilushad substantially higher mutability thanEscherichia coliandBacillus subtilis. The predominant mutations inG. kaustophiluswere A · T→G · C and C · G→T · A transitions, implying that the high mutability ofG. kaustophiluswas attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair inG. kaustophilus, deletions of themutSL,mutY,ung, andmfdgenes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsicpyrFgene. Although the strain harboringBacillus subtilispyrFwas also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generatingB. subtilisPyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document