scholarly journals Sludge Treatment for Application in Agriculture Should be the Option Number One for Ukraine

2017 ◽  
pp. 356-362
Author(s):  
Lidiia Svirenko ◽  
Viktoriia Bondar

Ukraine is well-known in the world as a country with soil rich for humus. Approximately 68% of arable soils in Ukraine have been classificated as chernozem. For last decades decrease of organic matter content in soils of various agri-climatic zones has been surveyed in the country. The main reason of the mentioned process is enormous lack of organic fertilizer (manure) in agriculture connected with decrease in livestock (in 3 times since year 1992). Besides there is expansion of technical crops for biofuel production (like Brassica napus, Helianthus annuus), which are the provocateurs of soils exhaustion. At the same time such important source of organic matter for application in agriculture as sewage sludge (SS) from wastewater treatment plant (WWTP) is not used in Ukraine nowadays. To stop arable soils degradation in regions it is necessary to develop up-to-date management for fertilizer production on WWTPs. The base for the process has to be the acceptance of the goal-oriented National programme, corresponding governmental decrees and implementation of national standard for using sewage sludge as fertilizer.

2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


2016 ◽  
Vol 30 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Ewa A. Czyż ◽  
Anthony R. Dexter

Abstract Soil bulk density was investigated as a function of soil contents of clay and organic matter in arable agricultural soils at a range of locations. The contents of clay and organic matter were used in an algorithmic procedure to calculate the amounts of clay-organic complex in the soils. Values of soil bulk density as a function of soil organic matter content were used to estimate the amount of pore space occupied by unit amount of complex. These estimations show that the effective density of the clay-organic matter complex is very low with a mean value of 0.17 ± 0.04 g ml−1 in arable soils. This value is much smaller than the soil bulk density and smaller than any of the other components of the soil considered separately (with the exception of the gas content). This low value suggests that the clay-soil complex has an extremely porous and open structure. When the complex is considered as a separate phase in soil, it can account for the observed reduction of bulk density with increasing content of organic matter.


2019 ◽  
Vol 195 ◽  
pp. 104382 ◽  
Author(s):  
Hanxi Wang ◽  
Jianling Xu ◽  
Xuejun Liu ◽  
Di Zhang ◽  
Longwei Li ◽  
...  

2020 ◽  
Author(s):  
Elena Prudnikova ◽  
Igor Savin

&lt;p&gt;The study presents the analysis of effect of changes of the open surface of arable soils occuring due to the influence of agricultural practices or natural factors (mainly, precipitation) on the possibility of assessment of organic matter content in the arable layer with optical remote sensing data.&lt;/p&gt;&lt;p&gt;The object of the research was gray forest arable soil of a test field located in the Yasnogorsky district of the Tula region. In 2019, the field was complete fallow.&lt;/p&gt;&lt;p&gt;During field work conducted on the test field on 15.08.2019, the spectral reflectance of the surface of arable soils and a wetter subsurface horizon was measured at 30 points. At the same points, 30 mixed samples of the arable horizon were collected for laboratory estimation of organic matter content.&lt;/p&gt;&lt;p&gt;Spectral reflectance was measured using a HandHeld-2 field spectroradiometer, which operates in the range 325&amp;#8211;1050 nm with a step of 1 nm.&lt;/p&gt;&lt;p&gt;Proximal sensing data were smoothed with Savitzky-Golley function and recalculated into Sentinel-2 bands using Gaussian function.&lt;/p&gt;&lt;p&gt;We also chose seven Sentinel-2 scenes for 2019 for the studied region: 2.04.2019, 17.04.2019, 20.04.2019, 5.05.2019; 6.06.2019, 19.06.2019, 28.08.2019. Atmospheric correction for chosen scenes was performed with Sen2Cor model in SNAP. Aftewords we extracted reflectance values at points, where we collected spectral data and soil samples in the field.&lt;/p&gt;&lt;p&gt;Then we calculated a number of spectral indices and ratios for both proximal and Sentinel-2 data which were further used in regression modelling. Models were cross-validated by bootstrapping.&lt;/p&gt;&lt;p&gt;At field scale, difference in moisture content did not significantly affect the accuracy and quality of the models. R&lt;sup&gt;2&lt;/sup&gt;adjcv of model for dry surface layer was a bit higher than in case of model for wet subsurface layer (0.77 vs. 0.72). RMSEPcv and RPIQ for both cases were very close (0.71 and 0.71; 2.09 and 2.12).&lt;/p&gt;&lt;p&gt;When we used models developed based on proximal sensing data to calculate OM content with Sentinel-2 data at different acquisition dates, we found that the accuracy of OM prediction varied. In some cases RMSE was higher than 7 % and predicted OM content was two times higher than actual.&lt;/p&gt;&lt;p&gt;Models developed based only on Sentinel-2 data for different acquisition dates, varied in accuracy, quality and informative bands. R&lt;sup&gt;2&lt;/sup&gt;adjcv of most models was about 0.72-0.83, RPIQ was 2.09-2.07, and RMSEPcv was in the range of 0.56-0.77 %.&lt;/p&gt;&lt;p&gt;Therefore changes in surface state of arable soils result in a situation when for each state we have different model. That imposes restrictions on further use of such models for remote evaluation and monitoring of organic matter content in arable soils. To deal with this problem, it is necessary to account for soil surface state when developing models for properties of arable soils based on optical remote sensing data.&lt;/p&gt;&lt;p&gt;The research was funded by the Ministry of Science and Higher Education of Russia (contract &amp;#8470; 05.607.21.0302).&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 15 (2) ◽  
pp. 93-102
Author(s):  
MB Hossain ◽  
KS Ryu

A Greenhouse experiment was conducted to identify the suitable dose of organic fertilizer for lettuce production. Different doses of organic fertilizer (6.5, 13 and 26 t ha-1) and the recommended dose of chemical fertilizer (RDCF) as standard were selected for this experiment. Application of 13 t ha-1 organic fertilizer significantly increased leaf size (length and breadth) of lettuce. This treatment also increased 14, 25, 21, 32, 24, 27, 36 and 168% fresh weight, dry weight, N, P, K, Ca, Mg & Na uptake over RDCF, respectively. Organic matter content was increased of 17.79, 43.82 and 89.89% in 6.5, 13 and 26 t ha-1 organic fertilizer treated plots respectively over recommended dose of chemical fertilizers. Data also indicated that organic fertilizer @ 26 t ha-1 resulted in significant increase in pH, total nitrogen (24%), organic matter (90%) and Zn (29%) compared to RDCF and decreased electrical conductivity, mineral nitrogen (NH4 +-N & NO3 --N) and cadmium and lead (Cd & Pb) in soil. Positive and significant correlation was observed on yield and yield attributes of lettuce and soil nitrogen, organic matter with pH, total nitrogen with mineral nitrogen and negative correlation was found with applied organic fertilizer with cadmium and lead. Based on these results, organic fertilizer @ 13 t ha-1 without chemical fertilizer could be recommended to increase lettuce yield as well as mitigate heavy metals in soil.SAARC J. Agri., 15(2): 93-102 (2017)


2011 ◽  
Vol 63 (4) ◽  
pp. 641-648 ◽  
Author(s):  
L. E. Rodríguez-Gómez ◽  
M. Álvarez ◽  
J. Rodríguez-Sevilla ◽  
M. C. Marrero ◽  
A. Hernández

In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O2 has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.


2016 ◽  
Vol 30 (3) ◽  
pp. 269-274 ◽  
Author(s):  
József Tibor Aranyos ◽  
Attila Tomócsik ◽  
Marianna Makádi ◽  
József Mészáros ◽  
Lajos Blaskó

Abstract Studying the long-term effect of composted sewage sludge application on chemical, physical and biological properties of soil, an experiment was established in 2003 at the Research Institute of Nyíregyháza in Hungary. The applied compost was prepared from sewage sludge (40%), straw (25%), bentonite (5%) and rhyolite (30%). The compost was ploughed into the 0-25 cm soil layer every 3rd year in the following amounts: 0, 9, 18 and 27 Mg ha−1 of dry matter. As expected, the compost application improved the structure of sandy soil, which is related with an increase in the organic matter content of soil. The infiltration into soil was improved significantly, reducing the water erosion under simulated high intensity rainfall. The soil compaction level was reduced in the first year after compost re-treatment. In accordance with the decrease in bulk density, the air permeability of soil increased tendentially. However, in the second year the positive effects of compost application were observed only in the plots treated with the highest compost dose because of quick degradation of the organic matter. According to the results, the sewage sludge compost seems to be an effective soil improving material for acidic sandy soils, but the beneficial effect of application lasts only for two years.


2021 ◽  
Vol 5 (2) ◽  
pp. 90-94
Author(s):  
J.J. Gairhe ◽  
S. Khanal ◽  
S. Thapa

Changes in soil organic matter (SOM) are slow and difficult to monitor, usually apparent after few decades. Recent changes in the agriculture had its influence on soil, including the soil organic matter content. About 60% of soil in Nepal now have low organic matter content. Agriculture Perspective Plan (APP) was focused more on the concept of green revolution to increase the chemical fertilizer inputs, however, the scenario is changing. Use of organic fertilizers is promoted extensively by government and different organizations with a target of increasing SOM content from 1.92% in 2015 to 4% by 2035. This paper aims at analysing the current status, targeted goal and the challenges faced in the augmentation of the soil organic matter using data available. Achieving this target requires an addition of extra 2.244 ton/ha of organic matter on a yearly basis for 20 years. The average amount of organic matter (2.5-3 ton/ha) applied is lesser than a single season grain harvest. 4.69% of sites had high soil organic matter in fiscal year 075/76 which slipped to 2.64% in 2076/77. The sites with low soil organic matter increased from 12.73% to 15.31%. The causes behind the SOM decline varies according to different agro-ecological zones like soil erosion, residue burning, imbalanced fertilizer use, defective FYM production etc. Findings suggest precise technologies required to be adopted to tackle with the different niche specific causes of soil fertility decline. Despite the complete nutrient content, bulky nature of organic fertilizers sets a major drawback regarding their transportation, distribution and commercialization. Government of Nepal is promoting organic fertilizer use by subsidizing their production cost by 50%. Following integrated nutrient management (INM) techniques, sustainable soil management practices (SSMP) and promotion of use of locally available resources can play a huge role in making the technology sustainable to the farmers.


2018 ◽  
Vol 6 (02) ◽  
pp. 139-148
Author(s):  
Yusmiati Bppt ◽  
Bambang Singgih

Survey results show that the soil organic matter content is very low, i.e. less than 2% for paddy fields and about 2% for the fields. The decrease of soil organic matter content is thought to be caused by the way of agricultural cultivation that is less attention to the content of organic matter with the use of chemical fertilizers is very intensive. The use of organic fertilizer can be a solution to the problem. Bio-slurry generated from liquid biogas reactors tends to be semi-solid and has characteristics, which are light brown or green and tend to be dark; little or no gas bubbles content; odorless and insect less; textured sticky, tough, and not shiny. The bio-slurry composition consists of organic materials (18-27%) and inorganic materials (2-3%). The content of NPK (Nitrogen, Phosphorus and Potassium) in liquid bio-slurry consists of nitrogen (0.25%), phosphorus (0.13), and potassium (0.12%). While the content of NPK in dry (solid) bio-slurry consists of nitrogen (3.6%), phosphorus (1.8%), and potassium (3.6%). In addition, bio-slurry also contains other nutrients, namely amino acids, fatty acids, humic acid, vitamin B-12, auxin hormones, cytokines, antibiotics, and micronutrients such as iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and molybdenum (Mo). Benefits of bio-slurry is for organic fertilizer, bio-pesticide, biological fertilizer, plant growth regulator, animal feed, improving soil structure, increasing weed growth, increasing soil fertility and increasing soil microorganism activity.


Sign in / Sign up

Export Citation Format

Share Document