Lupin Pest Management in the Ecuadorian Andes: Current Knowledge and Perspectives

2017 ◽  
Vol 28 (6) ◽  
pp. 250-256 ◽  
Author(s):  
Diego Mina ◽  
Quentin Struelens ◽  
Carlos Carpio ◽  
Marco Rivera ◽  
Nasser Rebai ◽  
...  
2014 ◽  
Vol 87 (3) ◽  
pp. 385-405 ◽  
Author(s):  
Giovanni Benelli ◽  
Kent M. Daane ◽  
Angelo Canale ◽  
Chang-Ying Niu ◽  
Russell H. Messing ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 950
Author(s):  
Diego Piedra-García ◽  
Christine Struck

Lupins (Lupinus spp.) are an ancient yet important legume crop. In Europe, the protein-rich seeds serve as livestock feed and have the potential to be a healthy vegetarian component of human diets. In some regions in north-eastern Europe, lupins are heavily damaged by two Curculionidae species, the lupin root weevils (LRWs) Charagmus gressorius (syn. Sitona gressorius) and Ch. griseus (syn. S. griseus). Narrow-leaved lupins (L. angustifolius) and white lupins (L. albus) are most affected. The weevils feed on lupin leaves, whereas their larvae feed on root nodules. Therefore, the larvae cause major root damage by creating lacerations that allow soil-borne plant pathogens to enter the plant tissue. These infestations lead to considerable yield losses and markedly reduced N-fixation of the root nodules. This review summarises the current knowledge on the origin, geographical distribution, and biology of these rarely described weevils. It focuses on management strategies, including preconceived insecticide use and potential ecological management methods, as key components of an integrated pest management programme against LRWs in Europe.


Acarologia ◽  
2021 ◽  
Vol 61 (1) ◽  
pp. 3-19
Author(s):  
Anne-Sophie Soulié ◽  
Nathalie Sleeckx ◽  
Lise Roy

The poultry red mite Dermanyssus gallinae is a strict hematophagous parasite of birds, causing major health and economic problems in poultry farms worldwide. The use of plant-derived repellents against this pest could be an alternative control method as part of Integrated Pest Management strategies. In this review, the different types of repellents and the testing methods used to explore them in arthropods are synthesized. State-of-the-art knowledge on the repellent properties of natural plant-derived substances against D. gallinae is established. Studies reporting repellent properties exerted by plant-derived substances against D. gallinae are reviewed, and the level of discrimination between the different types of properties achieved by the experimental designs implemented is examined. Factors that may modulate repellent activity in arthropods are reviewed, and the available evidence for D. gallinae is highlighted. A framework is proposed for the rational use of knowledge from experiments for the implementation of Integrated Pest Management (IPM). In addition, to optimize the implementation of IPM strategies for D. gallinae, the current knowledge related to the risk of emergence of resistance to natural repellents is documented. This phenomenon has not been explored in D. gallinae to date, but resistance to several repellent substances has been reported in insects, with some cross-resistance between repellents and neurotoxic insecticides.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Peng Han ◽  
Anne-Violette Lavoir ◽  
Cesar Rodriguez-Saona ◽  
Nicolas Desneux

Bottom-up effects are major ecological forces in crop–arthropod pest–natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 7 (8) ◽  
pp. 238 ◽  
Author(s):  
Tânia Nobre

The applied importance of symbiosis has been gaining recognition. The relevance of symbiosis has been increasing in agriculture, in developing sustainable practices, including pest management. Insect symbiotic microorganisms’ taxonomical and functional diversity is high, and so is the potential of manipulation of these microbial partners in suppressing pest populations. These strategies, which rely on functional organisms inhabiting the insect, are intrinsically less susceptible to external environmental variations and hence likely to overcome some of the challenges posed by climate change. Rates of climate change in the Mediterranean Basin are expected to exceed global trends for most variables, and this warming will also affect olive production and impact the interactions of olives and their main pest, the obligate olive fruit fly (Bactrocera oleae). This work summarizes the current knowledge on olive fly symbiotic bacteria towards the potential development of symbiosis-based strategies for olive fruit fly control. Particular emphasis is given to Candidatus Erwinia dacicola, an obligate, vertically transmitted endosymbiont that allows the insect to cope with the olive-plant produced defensive compound oleuropein, as a most promising target for a symbiosis disruption approach.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 659
Author(s):  
Kim Khuy Khun ◽  
Bree A. L. Wilson ◽  
Mark M. Stevens ◽  
Ruth K. Huwer ◽  
Gavin J. Ash

Weevils are significant pests of horticultural crops and are largely managed with insecticides. In response to concerns about negative impacts of synthetic insecticides on humans and the environment, entomopathogenic fungi (EPF) have been developed as an alternative method of control, and as such appear to be “ready-made” components of integrated pest management (IPM) programs. As the success of pest control requires a thorough knowledge of the biology of the pests, this review summarises our current knowledge of weevil biology on nut trees, fruit crops, plant storage roots, and palm trees. In addition, three groups of life cycles are defined based on weevil developmental habitats, and together with information from studies of EPF activity on these groups, we discuss the tactics for integrating EPF into IPM programs. Finally, we highlight the gaps in the research required to optimise the performance of EPF and provide recommendations for the improvement of EPF efficacy for the management of key weevils of horticultural crops.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document