scholarly journals Comparison of fatty acid composition of milk from Holstein and local breed cows in two breeding systems

Author(s):  
Yakout BENMALLEM REMANE ◽  
Cristophe BLECKER ◽  
Marie Laure FAUCONNIER ◽  
Mohand Mouloud BELLAL ◽  
Nassim MOULA

Milk production and quality are influenced by many factors, including nutrition, management practices and breed. The aim of this study was to determine the effect of farming management system and breed on the milk yield, and fatty acid composition of the milk from 50 confinement-fed cows that were fed a total mixed ration, and 52 pasture-fed cows grazed together in rangeland. Individual milk samples (N = 102) were collected once in February. Milk from local breed was characterized by a significantly lower milk yield, and somatic cell count, and a higher protein content than the Holstein breed. The fatty acid composition was relatively the same in both breeds. The result showed that farming management system has no significant effect on the milk yield, somatic cell count, and fat contents, while there was a significant effect on protein content and fatty acid composition. The milk of Holstein cows from extensive system was characterized by more favorable fat fractions with significantly lower concentrations of C10:0, C12:0, C14:0, the sum of short and medium chain saturated fatty acids and n-6: n-3 ratio, and also by higher concentration of unsaturated fatty acids and the sum of n-3 than the milk of Holstein from intensive system.

1974 ◽  
Vol 25 (4) ◽  
pp. 657 ◽  
Author(s):  
TH Stobbs ◽  
DJ Brett

Jersey cows were used in a change-over design to examine the effect of three levels of energy intake (lucerne hay at 100, 75 and 50% ad lib.) on milk yield, milk composition, fatty acid composition of milk fat, and blood metabolites (non-esterified fatty acids, glucose and total ketones) to determine which measurement was the most accurate indicator of intake of energy. Milk yields averaged 9.9, 8.7 and 7.2 kg/cow/day with relative intakes of 100, 75 and 50% of ad lib. When energy was restricted the proportion of C4–C16 fatty acids in milk fat decreased (72, 69 and 59%), while the proportion of oleic acid increased (15, 18 and 26%). These changes occurred within approximately 6 days on new energy levels. Fore milk and strippings had similar fatty acid proportions. Restriction of energy reduced the solids not fat, protein and casein contents of milk, and increased its butter fat percentage. Non-esterifred fatty acid levels in blood plasma increased with restriction of feed (348, 528 and 579 µ-equiv./l). Glucose and ketone bodies of blood averaged 58 mg/100 ml and 9.1 mg/100 mi respectively, and did not vary between treatments. It is concluded that milk production is the most sensitive indicator of the intake of digestible energy where change-over designs are used. However, when individual animal variation is not removed in the analysis, the intake of energy is most closely correlated with the fatty acid composition of milk fat (r = 0.73 and –0.74 for C4–C16 acids and oleic acid respectively). Significant correlations with the protein to fat and casein to fat ratios of milk were also measured (r = 0.64 and 0.63 respectively). There was a poor relationship between energy intake and blood composition (r = –0.25 for non-esterified fatty acid content).


2017 ◽  
Vol 71 (2) ◽  
pp. 111-118
Author(s):  
Radoslav Sevic ◽  
Dragomir Lukac ◽  
Vitomir Vidivic ◽  
Nikola Puvaca ◽  
Bozidar Savic ◽  
...  

The aim of this study was to provide a comparative analysis of chemical and fatty acid composition, as well as of the connective tissue proteins in pigs of different genotypes, Mangalitsa and Landrace. Both pig genotypes were fed with the same feed of standard composition and quality. At the end of the fattening period, in total 24 pigs of both genotypes were slaughtered. Based on the analysis of the chemical composition we came to the conclusion that the protein content in both genotypes was similar. Moisture and ash content in the Landrace pig genotype differed significantly (P < 0.01) compared with genotype of Mangalitsa breed. Statistically significant differences (P < 0.01) were established in the fat content, which was 7.95 g/100 g, in pigs of Mangalitsa breed and 1.59 g/100 g in the Landrace pigs breed. Content of hydroxyproline, non-proteinogenic amino acids, in meat of Landrace was significantly higher (P < 0.01) compared to the content in the Mangalitsa breed. The same tendency was observed with regard to the connective tissue protein content, as well as with the relative connective tissue protein content. The fatty acid composition of the meat indicated that the most common saturated fatty acid (SFA) in both tested breeds was palmitic fatty acid (C16), whose content was significantly higher in Landrace (P < 0.01) compared with its content in Mangalitsa breed. In addition, the share of stearic acid (C18) was significantly higher (P < 0.01) in Landrace compared to Mangalitsa pig breed, what significantly contributed to the increase of the SFA share in Landrace compared to Mangalitsa breed. The most common monounsaturated fatty acid in both pig breeds was the oleic fatty acid (C18:1), whose share was significantly higher in Mangalitsa compared to the Landrace breed (P < 0.01). Out of the polyunsaturated fatty acids (PUFA), linoleic fatty acid (C18:2) was the most predominant in both pig breeds, with no statistically significant differences (P > 0.05). The content of PUFA was not statistically significantly different between the tested breeds, as well as the content of n-3 and n-6 fatty acids, which caused no statistically significant differences in the n-6/n-3 PUFA ratio. Ratio of the unsaturated fatty acids, i.e., of the sum of MUFA and PUFA, and of the saturated fatty acids was significantly higher in Mangalitsa compared to Landrace breed (1.86 vs. 1.4), and the same was observed when it comes to the relationship MUFA/SFA (1.51 in Mangalitsa vs. 1.08 in Landrace breed) and MUFA/PUFA (4.35 vs. 3.38).


2021 ◽  
Vol 67 (2) ◽  
pp. 3431-3440
Author(s):  
Flóra Mária Petróczki ◽  
Béla Béri ◽  
Ferenc Peles

Changes in the composition and hygienic properties of milk affect producer price, so it is essential for the responsible dairy farmer to collect information on changes in these parameters due to various factors. In their study, the authors seek to answer the question whether there is a fluctuation in the daily milk yield of cows and in the composition (fat and protein content) and microbiological properties (somatic cell count, total plate count, coliform and S. aureus count) of raw cow’s milk in primiparous and multiparous cows or at different stages of their lactation. Based on the data of a Hungarian large-scale dairy farm, it was found that there was no difference in the fat and protein content of the milk, but the daily milk yield was higher in the case of multiparous cows and, compared to the milk of primiparous cows, their milk had a higher somatic cell count and larger amounts of coliform bacteria. The daily milk yield decreased in the successive stages of lactation, but the fat and protein content of the milk increased, which is presumably due to the concentrating effect of the decreasing milk yield. No significant change was observed in the colony count of microorganisms at the different stages of lactation.


2017 ◽  
Vol 84 (4) ◽  
pp. 453-463 ◽  
Author(s):  
Sabine Ferneborg ◽  
Lucia Kovac ◽  
Kevin J Shingfield ◽  
Sigrid Agenäs

It has been well established that milk yield is affected both by milking frequency and due to the removal of residual milk, but the influence of a combination of these factors is unclear. In this study, four mid-lactation cows were used in a 4 × 4 Latin square design to test the hypothesis that the effects of more frequent milking and residual milk removal on milk yield and composition are additive and alter milk fatty acid composition. Treatments comprised two or four times daily milking in combination with (or without) residual milk removal over a 96 h interval preceded by a 2 d pretreatment period and followed by a 8 d washout in each 14 d experimental period. Milk was sampled at each milking for the analysis of gross composition and SCC. Samples of available and residual milk collected on the last milking during each treatment period were collected and submitted for fatty acid composition analysis. Increases in milking frequency and residual milk removal alone or in combination had no effect on milk yield or on the secretion of lactose and protein in milk. However, residual milk removal during more frequent milking increased milk fat yield. Milking treatments had no major influence on the fatty acid composition of available milk, but resulted in rather small changes in the relative abundance of specific fatty acids, with no evidence that the additive effects of treatments were due to higher utilisation of preformed fatty acids relative to fatty acid synthesis de novo. For all treatments, fat composition of available and residual milk was rather similar indicating a highly uniform fatty acid composition of milk fat within the mammary gland.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1097
Author(s):  
Ferenc Pajor ◽  
István Egerszegi ◽  
Ágnes Szűcs ◽  
Péter Póti ◽  
Ákos Bodnár

The aim of this study was to evaluate the effect of the Schizochytrium limacinum marine algae on the milk composition and fatty acid profile, somatic cell count, and prevalence of pathogen bacteria in the raw milk of multiparous Alpine goats. Twenty-eight dairy goats were randomly allocated to two groups: control group (C)—fed with 1500 g alfalfa hay and 600 g concentrate; experimental group (MA)—received the same forages and concentrate supplemented with 10 g/head/day marine algae. The goats were housed indoors, while the experiment lasted five weeks, and the milk samples were taken every week. Marine algae feeding had no negative effect on milk composition. The marine algae inclusion significantly decreased the milk somatic cell count and the presence of udder pathogens in the MA group. Mean somatic cell count and presence of udder pathogens were 5.73 log cells/mL and 31%, respectively, in the C group, while these values were 5.34 log cells/mL and 10%, respectively, in the MA group. The marine algae supplementation significantly increased DHA and rumenic acid concentration in the milk of the MA group (0.32 and 0.99 g/100 g of fatty acids, respectively) compared to the C group (0.04 and 0.65 g/100 g of fatty acids, respectively). It can be concluded that a diet supplemented with marine algae significantly improves the udder health of goats and the concentrations of health-promoting fatty acids in milk.


2000 ◽  
Vol 25 ◽  
pp. 175-177 ◽  
Author(s):  
J.K. Margerison ◽  
C.J.C. Phillips

AbstractSuckling following mechanical milking is common practice in organic dairy production systems and in developing countries. The objective of the experimental work was to assess the effect of suckling and suckling frequency following mechanical milking on milk yield, milk composition and somatic cell count. Two experiments were completed using multiparous dairy cows allocated at 3 days post partum to their respective treatment groups. In experiment one, twenty–four multiparous dairy cows were allocated to one of two treatments for 305 days; 12 cows not suckled (NS) and 12 cows, which were suckled twice daily following mechanical milking (S2). Daily milk yield was significantly greater (P<0.05) in suckled cows, NS 8.0, S2 8.9 (sem 0.18) kg/d. Milk fat content was significantly lower (P<0.05) in suckled cows (NS 32.0, S2 30.7 (sem 0.56) g/kg). However, milk protein was not significantly different in suckled cows, NS 29.2, S2 27.6 (sem 10.79) g/kg compared with non suckled cows. Somatic cell count was significantly lower (P<0.05) in suckled cows NS 106, S2 85 (sem 2.85) 000/ml, compared with non suckled cows. In experiment two, thirty-eight cows were allocated one of two treatments for 120 days; 19 cows not suckled (NS) and 19 cows, which were suckled once daily following the afternoon milking (S1). Suckling took place for fifteen minutes daily following machine milking only. The calves were weaned at 6 months of age. Total daily milk yield was significantly greater (P<0.05) in suckled cows, NS 11.7, S1 12.5 (sem 0.04) (kg/d) compared with non suckled cows. The milk fat and protein content were not significantly different in suckled and non suckled cows. Milk fat content NS 33.4, S1 32.9 (sem 0.14) g/kg and milk protein content NS 29.8, S1 30.0 (sem 0.07) g/kg. In conclusion, suckled cows had significantly higher milk yields. Cows suckled twice daily had significantly lower milk fat content. Suckling did not affect milk protein content. Suckling cows twice daily significantly reduced SCC.


2016 ◽  
Vol 8 (5) ◽  
pp. 107 ◽  
Author(s):  
Yuksel Bolek ◽  
Halil Tekerek ◽  
Khezir Hayat ◽  
Adem Bardak

<p>The increase in the population at the global level necessitates to explore promising approaches to increase food supply, including protein and oil, to meet the needs of the people. Cotton is one of the most important oil producing crops and cottonseed meal provides important protein nutrients as animal feed. However, information on the genetic basis of cottonseed oil and protein contents is lacking. In this study; protein contents, oil and fatty acid composition of 124 cotton genotypes were observed for developing new cultivars. Accelerated Solvent Extraction method used for determining fat ratio; Gas Chromatography employed for fatty acid analysis while protein contents were analyzed by Kjeldahl method. Average crude oil 31.0%, total fat contents varied from 23.11 to 37.70% while mean protein content 38.0% were observed among genotypes. The dominating fatty acids included linoleic acid, palmitic acid and oleic acid (46.91, 25.73 and 20.21%) respectively, while linolenic acid (0.13%), r-linolenic (0.33%), palmitoleic acid (0.64%), myristic acid (0.88%), nervonic acid (1%) and stearic acid (2.38%) had variations in fatty acid contents. Frequency distribution of the parameters showed a normal distribution and differences among genotypes for the traits studied were statistically highly significant. Prinicipal component analysis showed a complex opposite relationship with a total protein and oil contents. Genotypes; Fantom for protein, Cirpan 60 for total crude oil, Stoneville 468 and YB195 for higher amount of fatty acids especially oleic acid; can be used for improvement of cottonseed quality in breeding programs.</p>


Sign in / Sign up

Export Citation Format

Share Document