scholarly journals Organic Agriculture and Innovative Crops under Mediterranean Conditions

2017 ◽  
Vol 45 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Dimitrios BILALIS ◽  
Ioannis ROUSSIS ◽  
Francisco FUENTES ◽  
Ioanna KAKABOUKI ◽  
Ilias TRAVLOS

Climate change is the greatest environmental threat facing humanity worldwide. Areas of South-East Europe and Mediterranean basin are expected to be among the most vulnerable countries to climate change. As a result of climate change, new species and crops have been introduced and may be introduced in the coming years. In addition, FAO considers that Organic Agriculture is an effective mitigation strategy to climate change and can build robust soils that adapt better to weather extremes associated with climate change. This review provides an overview of the growth performance of new innovative crops, including chia, camelina, quinoa, teff and nigella and retrovative crops such as flax and emmer wheat, based on experimental investigations conducted under Mediterranean conditions and organic cropping system. Several studies, performed under organic system, have proved that innovative crops can also be grown for alternative uses. Quinoa and chia could be successfully used in animal feed. Moreover, quinoa could be exploited as a medicinal plant due to saponins extracted from seed coats. Nigella and camelina seeds contain oils which can have several uses in pharmaceutical and food industries. Flax seed oil is rich in omega-3 fatty acids and can be accepted in the diets designed for specific health benefits. According to the literature, it is observed that innovative crops cultivated under organic system present better quality and similar yields as with those cultivated under conventional system, and in some cases, even higher. Taking all these into account, organic agriculture could also be characterized as innovative and not only as traditional.

Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Carla Trigo ◽  
María Luisa Castelló ◽  
María Dolores Ortolá ◽  
Francisco José García-Mares ◽  
María Desamparados Soriano

Moringa oleifera is originally a tropical crop with a fast development, little known in developed countries but cultivated since ancient times. It can adapt to regions affected by climate change, such as the Mediterranean basin, since it is a crop with a great resistance to high temperatures. In this study an in-depth bibliographical review was carried out by consulting different databases (Science Direct, FSTA, Scielo, Riunet, and Google Scholar) in order to find published scientific studies on the characteristics of this crop and its agronomic requirements. According to the information found, all parts of the Moringa oleifera, namely the leaves, pods, seeds, roots and flowers, can be used in different industrial sectors such as pharmaceutical, cosmetic, human food, animal feed, and water treatment since they have a nutritional profile rich in high biological value proteins, vitamins A and C, antioxidants, omega-3 fatty acids and minerals: calcium, iron, potassium, and phosphorous.


Author(s):  
Elvis Kodzo Ahiahonu ◽  
William Wilson Anku ◽  
Ashira Roopnarain ◽  
Ezekiel Green ◽  
Penny Poomani Govender ◽  
...  

AbstractMicroalgae are among the few biological resources studied that are found to possess vast biotechnological potential. This study isolated, identified and investigated two wild green microalgal species with substantial potential as a bioresource and climate change mitigation importance. Two isolates, Chlorella sorokiniana and Tetradesmus reginae were cultivated in selected artificial media under laboratory conditions. The isolates were analysed for nutrient consumption, biomass productivity, CO2 biosequestration rate, elemental composition and fatty acid methyl profiles/composition. The outcome showed maximum daily biomass productivity of 0.128 ± 0.003 and 0.2 ± 0.004 g L−1 for C. sorokiniana and T. reginae, respectively. CO2 biosequestration rate of T. reginae was the highest among the isolates, indicating that it can act as a biological climate change mitigation agent. Moreover, T. reginae recorded a significantly higher (p < 0.05) total lipid and carbohydrate content than C. sorokiniana. The C/N ratio for T. reginae was significantly higher than the C/N ratio for C. sorokiniana. Tetradesmus reginae also demonstrated the ability to produce a considerable quantity of omega-3 oils; hence, the species is of nutraceutical importance. Furthermore, T. reginae demonstrated maximal carbohydrate content and is therefore considered a potential feedstock for bioethanol production. Chlorella sorokiniana, on the other hand, showed a remarkable (p < 0.05) protein content making it a potential source for human food and animal feed supplement. Finally, the two isolates met both European and American quality biodiesel standards with exceptional cetane (CN) and iodine numbers (IV).


Author(s):  
Mariya Bezgrebelna ◽  
Kwame McKenzie ◽  
Samantha Wells ◽  
Arun Ravindran ◽  
Michael Kral ◽  
...  

This systematic review of reviews was conducted to examine housing precarity and homelessness in relation to climate change and weather extremes internationally. In a thematic analysis of 15 reviews (5 systematic and 10 non-systematic), the following themes emerged: risk factors for homelessness/housing precarity, temperature extremes, health concerns, structural factors, natural disasters, and housing. First, an increased risk of homelessness has been found for people who are vulnerably housed and populations in lower socio-economic positions due to energy insecurity and climate change-induced natural hazards. Second, homeless/vulnerably-housed populations are disproportionately exposed to climatic events (temperature extremes and natural disasters). Third, the physical and mental health of homeless/vulnerably-housed populations is projected to be impacted by weather extremes and climate change. Fourth, while green infrastructure may have positive effects for homeless/vulnerably-housed populations, housing remains a major concern in urban environments. Finally, structural changes must be implemented. Recommendations for addressing the impact of climate change on homelessness and housing precarity were generated, including interventions focusing on homelessness/housing precarity and reducing the effects of weather extremes, improved housing and urban planning, and further research on homelessness/housing precarity and climate change. To further enhance the impact of these initiatives, we suggest employing the Human Rights-Based Approach (HRBA).


Author(s):  
Yu. O. Tararico ◽  
Yu. V. Soroka ◽  
R. V. Saidak

Relevance of research. Due to ongoing climate change, almost the entire territory of the Steppe of Ukraine by annual humidity factor belongs to the dry and very dry zones, the relative area of ​​which has increased by 13.2% of the total area of ​​the country compared to the 1960-1990s. At the same time, for today in Ukraine only about 500 thousand hectares are actually irrigated, that is 19% of the potential area. Purpose of research. To determine the patterns and trends of climate change in the western part of the dry Steppe of Ukraine and analyze the economic indicators of production activity in the region as to the variable weather conditions. Research methodology. Climate change was estimated on the basis of Climate Water Balance (CWB) and Hydrothermal Coefficient (HTC) values. The analysis of the economic efficiency of agricultural production was carried out by analyzing the statistical data for Odessa region and for the chosen agricultural enterprise. Research results and conclusions. The use of significant heat supply in the dry Steppe zone is limited by insufficient water supply conditions. In the years of 1991-2016  the average annual rainfall was 480 mm and since the early 2000s there has been a slight increase in that. However, even having 500-550 mm of average annual rainfall that has been observed over the past five years, it is not enough for providing high-yield agricultural production. High thermal regime couses high evaporation that in turn, leads to water supply deficit, which at the end of the growing season amounts to 336-436 mm. According to the HTC index in the region 80% of cases show severe and moderately arid vegetation conditions. At the same time, irrigation area in the region has decreased to a minimum, which has led to the domination of winter cereals and sunflower in the cropping system. Under variable weather conditions, winter wheat yields ranged from 19.4 to 38.5 c/ ha (31.4 c/ha on average) and sunflower - from 12.2 to 21.4 c/ha (17.4 c/ha on average), winter rape - from 13.1 to 20.9 c/ha (18.2 c/ha). It was proved a close direct relationship between the sale price of products of all studied crops and their cost price, as well as the inverse relationship of these indicators with the crop yield. The profitability of winter wheat from 2011 till 2016 ranged from 17 to 153 USD/ha with an average value of 86 USD/ha, winter rape - from 39 to 273 USD/ha with an average value of 166 USD  ha and sunflower - from 116 to 315 USD/ha with an average value of 192 USD/ha. Corn and soybeans have proven to be unprofitable in some years, which obviously explains rather small areas under these crops in the region. Above mentioned demonstrates the high economic instability of agricultural production in changing weather conditions, which is accompanied by significant risks for producers, especially when attracting credits. This situation, in turn, leads to a limited use of intensification means, in particular mineral fertilizers, which promotes agrochemical soil degradation. Under unstable water supply, the magnitude of net profit variation per hectare of arable land in Odessa region is 33-188 USD/ha (111 USD/ha on average). It is possible to increase these indicators by increasing the share of winter rape in the cropping system. With the optimization of the water and air soil regimes as well as crop rotation factor, the profitability of agricultural production in the region can be increased up to 580-600 USD/ha. Similar results were obtained after analyzing the statistical data from the southern regions within the dry steppe zone.


2021 ◽  
Vol 145 (7-8) ◽  
pp. 311-321
Author(s):  
Damir Ugarković ◽  
Nenad Potočić ◽  
Marko Orešković ◽  
Krešimir Popić ◽  
Mladen Ognjenović ◽  
...  

Tree dieback is a complex process involving negative impact of various abiotic, biotic and anthropogenic factors. Climate change, comprising all those effects, is generally considered as the largest threat to forest ecosystems in Europe. Although the scale of climate change impacts on forests is not yet fully understood, especially on the regional or species level, significant damage seems to be caused by weather extremes, such as drought and strong winds. With the expected increase in the number, length, and/or intensity of extreme weather events in Croatia, research into the causes of tree mortality is both important and timely. Silver fir is the most damaged and endangered conifer tree species in Croatia. The dieback of silver fir can be attributed to various factors, therefore the goals of this research were to determine the mortality of silver fir trees (by number and volume) for various causes of mortality, among which the climatic and structural parameters were of most interest. The twenty-year data for tree mortality in pure silver fir stands in the area of Fužine (Gorski kotar, Croatia) were collected and analysed. The largest number and volume of dead trees was caused by complex (multiple causes) dieback in the overstorey (0,75 N/ha, 2,35 m<sup>3</sup>/ha), and the smallest (0,17 N/ha, 0,02 m<sup>3</sup>/ha) by dieback of supressed trees. No significant differences were determined regarding the timing of tree death for different causes of mortality. Climatic parameters (drought, air temperature, PET) and structural parameters of the stands (tree DBH, social position, crown diameter, shading, physiological maturity) as well as plot inclination were found to be the factors of a significant influence on the mortality of silver fir trees.


2020 ◽  
Vol 0 (2) ◽  
pp. 100-109
Author(s):  
Л. І. Моклячук ◽  
А. М. Ліщук ◽  
М. В. Драга ◽  
І. М. Городиська ◽  
Л. Б. Плаксюк ◽  
...  

2017 ◽  
Vol 247 ◽  
pp. 42-55 ◽  
Author(s):  
Ghulam Abbas ◽  
Shakeel Ahmad ◽  
Ashfaq Ahmad ◽  
Wajid Nasim ◽  
Zartash Fatima ◽  
...  

2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


2018 ◽  
Vol 35 (1) ◽  
pp. 59-66
Author(s):  
J. J. Gairhe ◽  
M. Adhikari

Climate change has been the burning issue in agriculture sector. The research world is focused on developing appropriate technology, innovations and concept to cope up this change. The Climate Smart Agriculture [CSA] has been adapted globally for cultivation and crop management in changing context without compromising yield and productivity. The CSA involves wide range altered techniques and innovations like using resilient varieties, water management, zero tillage, legumes incorporation, cover cropping, site specific fertilizer management, variation in planting date etc. Grounding on the similar practices and principles of CSA, the research in maize was conducted in 2014 in farmers' field of Eastern Nepal. Three progressive farmers with 1 hector of land were selected and Maize was cultivated using Zero tillage seed cum fertilizer driller tractor. This field experiment considers farmers as replication with six different treatments. All treatments differ to each other based on nutrient management, water management, residue management, tillage practice, crop establishment, and inclusion of legumes in the cropping system. Six treatments are coded as follows: Current Irrigated (CI), Improved Irrigated Low (IIL), Improved Irrigated High (IIH), Climate Smart Agriculture-Low (CSA-L), Climate Smart Agriculture-Medium (CSA-M), and Climate Smart Agriculture-High (CSA-H). Significant impact of intervention was observed in yield and yield attributes in the trial with climate smart agriculture practices than in conventional practices of farmers. Plant density, ear number, filled grains per cob and grain yield was substantially higher in climate smart practices revealing CSA to be the appropriate technology to minimize potential loss of climate change.


Sign in / Sign up

Export Citation Format

Share Document