scholarly journals Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L.

2020 ◽  
Vol 48 (3) ◽  
pp. 1260-1275
Author(s):  
Malihe JAHANI ◽  
Ramazan Ali KHAVARI-NEJAD ◽  
Homa MAHMOODZADEH ◽  
Sara SAADATMAND

Interaction of nanoparticles (NPs) as a significant threat to ecosystems with biological processes of plants is very important. Here, the effects of cobalt oxide (Co3O4) NPs on some physio-biochemical characteristics of Brassica napus L. were investigated. The two-weeks seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1). The results showed that this treatment significantly affected the fresh and dry weights, area, relative water content (RWC) and relative chlorophyll value (SPAD) of leaves. The highest reduction of growth and biomass indexes occurred at 4000 mg L-1 NPs. The content of H2O2 and electrolyte leakage (EL) increased respectively, after 100 and 250 mg L-1 of Co3O4 NPs and showed a maximum level at 4000 mg L-1. The activities of phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX) and superoxide dismutase (SOD) increased after 100 mg L-1 of Co3O4 NPs. However, tyrosine ammonia lyase (TAL) activity enhanced after 500 mg L-1. The catalase (CAT) activity and protein content decreased after 1000 mg L-1 of Co3O4 NPs. Application of concentrations higher than 500 mg L-1 of Co3O4 NPs induced polyphenol oxidase (PPO) activity but reduced glutathione reductase (GR). The activities of guaiacol peroxidase (GPX) and glutathione S-transferase (GST) increased at 250-1000 mg L-1 of Co3O4 NPs and then decreased. These results suggested that low concentrations of Co3O4 NPs induced a positive effect on growth parameters but high levels caused extensive oxidative damage and mediated defense responses by organization of phenolic compounds and antioxidative system.

2017 ◽  
Vol 107 (4) ◽  
pp. 444-454 ◽  
Author(s):  
Daniel Teshome Lopisso ◽  
Jessica Knüfer ◽  
Birger Koopmann ◽  
Andreas von Tiedemann

Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.


2017 ◽  
Vol 9 (6) ◽  
pp. 591 ◽  
Author(s):  
Wangfei Zhang ◽  
Zengyuan Li ◽  
Erxue Chen ◽  
Yahong Zhang ◽  
Hao Yang ◽  
...  

2020 ◽  
Vol 42 (8) ◽  
Author(s):  
Katarzyna Pieczul ◽  
Agnieszka Dobrzycka ◽  
Joanna Wolko ◽  
Agnieszka Perek ◽  
Małgorzata Zielezińska ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262140
Author(s):  
Ihsan Elahi Zaheer ◽  
Shafaqat Ali ◽  
Muhammad Hamzah Saleem ◽  
Hafiza Sana Yousaf ◽  
Afifa Malik ◽  
...  

Environmental contamination of chromium (Cr) has gained substantial consideration worldwide because of its high levels in the water and soil. A pot experiment using oil seed crop (rapeseed (Brassica napus L.)) grown under different levels of tannery wastewater (0, 33, 66 and 100%) in the soil using the foliar application of zinc (Zn) and iron (Fe)–lysine (lys) has been conducted. Results revealed that a considerable decline in the plant growth and biomass elevates with the addition of concentrations of tannery wastewater. Maximum decline in plant height, number of leaves, root length, fresh and dry biomass of root and leaves were recorded at the maximum level of tannery wastewater application (100%) compared to the plants grown without the addition of tannery wastewater (0%) in the soil. Similarly, contents of carotenoid and chlorophyll, gas exchange parameters and activities of various antioxidants (superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) were also reduced significantly (P < 0.05) with the increasing concentration of tannery wastewater (33, 66 and 100%) in the soil. In addition, a combined application of Zn and Fe-lys reduced the accumulation and uptake of toxic Cr, while boosting the uptake of essential micronutrients such as Zn and Fe in different tissues of the plants. Results concluded that exogenous application of micronutrients chelated with amino acid successfully mitigate Cr stress in B. napus. Under field conditions, supplementation with these micronutrient-chelated amino acids may be an effective method for alleviating metal stress in other essential seed crops.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 27-34 ◽  
Author(s):  
T. Abedi ◽  
H. Pakniyat

The study was undertaken to identify the responses of antioxidant enzyme activities and their isozyme patterns in seedlings of 10 oilseed rape (Brassica napus L.) cultivars under drought stress conditions. Plants were grown under three irrigation regimes (FC; field capacity, 60% FC and 30% FC) in a greenhouse. Drought stress preferentially enhanced the activities of superoxide dismutase (SOD) and guaiacol peroxidase (POD) whereas it decreased catalase (CAT) activity. Licord with the highest level of enzyme activity under both optimum and limited irrigation regimes is reported as the most tolerant cultivar. Whereas Hyola 308 and Okapy, having the lowest enzymes activities, are mentioned as cultivars sensitive to drought stress. The native polyacrylamide gel electrophoresis (PAGE) analysis detected eight SOD isozymes. Oilseed rape leaves contained three isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. The expression of Mn-SOD was preferentially enhanced by drought stress. Five POD isoforms were detected in oilseed rape leaves. The intensities of POD-4 and -5 were enhanced under drought stress. According to the results, the appearance of new isozyme bands under drought stress conditions may be used as a biochemical marker to differentiate drought tolerant cultivars under drought stress.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Arafat Abdel Hamed Abdel Latef ◽  
Amal M. Omer ◽  
Ali A. Badawy ◽  
Mahmoud S. Osman ◽  
Marwa M. Ragaey

A pot experiment was designed and performed in a completely randomized block design (CRBD) to determine the main effect of two plant growth-promoting rhizobacteria (PGPR) and their co-inoculation on growth criteria and physio-biochemical attributes of canola plants (Brassica napus L.) plant grown in saline soil. The results showed that inoculation with two PGPR (Azotobacter chroococcum and/or Alcaligenes faecalis) energized the growth parameters and photosynthetic pigments of stressed plants. Moreover, soluble sugars’ and proteins’ contents were boosted due to the treatments mentioned above. Proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were markedly declined. At the same time, antioxidant enzymes, viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), were augmented due to the inoculation with Azotobacter chroococcum and/or Alcaligenes faecalis. Regarding minerals’ uptake, there was a decline in sodium (Na) and an increase in nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) uptake due to the application of either individual or co-inoculation with the mentioned bacterial isolates. This study showed that co-inoculation with Azotobacter chroococcum and Alcaligenes faecalis was the most effective treatment and could be considered a premium tool used in facing environmental problems, especially saline soils.


2015 ◽  
Vol 66 (5) ◽  
pp. 481 ◽  
Author(s):  
Jing Zhang ◽  
Liyong Hu ◽  
Bob Redden ◽  
Guijun Yan

In this study, 137 canola (Brassica napus L.) accessions were evaluated for germination speed, which is a critical character in the plant life cycle. The accessions were grouped into three categories, fast (F), medium, and slow (S), with nine category F (7%) and 12 category S (9%) germination accessions identified and validated in repeated Petri dish and pot experiments. Although accessions in category F showed significantly faster germination and emergence than those in category S, seedling growth parameters did not differ greatly. Based on germination speed and seedling characteristics, four accessions with high early vigour and four with low early vigour were identified. Seed germination speed was not affected by seed weight and was not simply controlled by gibberellic acid and abscisic acid, but 10% smoke water significantly delayed seed germination. The identified accessions with contrasting early vigour can be used to study the genetic and molecular mechanism of seed germination and seedling development and to breed superior canola cultivars.


Sign in / Sign up

Export Citation Format

Share Document