scholarly journals Effect of municipal wastewater irrigation and well water on plant and soil characteristics

2020 ◽  
Vol 12 (2) ◽  
pp. 409-419
Author(s):  
Mashallah DANESHVAR ◽  
Farhad FATTAHI ◽  
Hamid R. RAHMANI ◽  
Seyed A. M. MODARRES SANAVY ◽  
Masoud SAMI

In order to investigate the effect of treated wastewater on forage yield, nutrient elements and heavy metals in corn plants (Zea maize, 704 single cross), a field experiment was conducted in RCBD with three treatments in four replications in 2017. Irrigation with well water as first treatment, irrigation with wastewater as second treatment and irrigation with well water and wastewater was alternately applied as a third treatment. The results showed that the highest amount of forage corn yield, stalk and ear dry weight, plant height and leaf number and spade index were obtained in irrigation with wastewater. The highest nitrogen content of leaf and stalk and corn grain was obtained in irrigation with wastewater treatment and the least amount in irrigation with well water treatment was obtained. The amount of phosphorus and potassium measured in leaf and stalk of corn in all three treatments were not significantly different. Also, the highest amount of iron and zinc in leaf and stalk of corn was obtained in irrigation with wastewater treatment. The results showed that the amount of heavy metals including lead, cadmium and nickel in soils were not significantly different in all three treatments. According to the results, the use of urban wastewater not only does not cause soil and plant pollution to heavy elements, but also increases plant yield and nutrition.

2019 ◽  

<p>In order to investigate the effect of treated wastewater on heavy metals and fecal coliform in plant and soil, a field experiment was conducted in RCBD with three treatments in four replications during 2016-2017 in Borkhar, Isfahan (Iran). Treatments including well water, semi-treated wastewater and combination of well water and wastewater were applied in consecutive cultivation of wheat and forage corn. The amount of heavy metals in the soil did not change after two seasons of wastewater application compared to well water. The amount of fecal coliform in both plants was increased in the irrigation water treatment compared to the well water, which was more evident in the corn plant, which is related to the high moisture content of this plant at harvest stage. Due to the improvement of soil nutrient concentrations after two seasons of continuous application of wastewater and no increase in the amount of heavy metals in the soil, the use of wastewater for agricultural production is permissible. But according to the fecal coliform index, it is recommended not to be used for the production of crops harvested at high humidity and conditions for the survival of pathogens.</p>


2021 ◽  
Vol 31 (3) ◽  
pp. 265-275
Author(s):  
Ewelina Płuciennik-Koropczuk ◽  
Martyna Myszograj ◽  
Sylwia Myszograj

Abstract The article presents lifestyle as an important factor determining the quantity and quality of municipal wastewater. The characteristic of wastewater in Poland has changed significantly in recent years. The qualitative characteristics of municipal wastewater indicate an increase of organic compounds and in the scope of micro-contaminants identified in them, e.g. nanoparticles, microplastics, pharmaceutical and personal care products or heavy metals. Therefore, the knowledge of parameters such as: BOD5, COD, total N, total P and suspension solids is no longer sufficient for the design and operation of wastewater treatment systems. Comprehensive research in this area is necessary to select those indicators that better describe the characteristics of wastewater.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2021 ◽  
Vol 317 ◽  
pp. 276-282
Author(s):  
Deong Jing Lie ◽  
Mazatusziha Ahmad ◽  
Nur Sabrina Azhar

Plant-based coagulants have been used as an alternative material to replace chemical coagulant in wastewater treatment. So far, limited information was found on the incorporation of plant-based biocoagulant to natural polymers and the effect of particle size upon wastewater treatment application. Thus, this study was conducted to explore the effectiveness of micronsized and nanosized Carica Papaya (CP) seed modified pullulan as biocoagulant. Biocoagulant were prepared at different composition of CP to pullulan, with the CP content range from 1% to 9%. The biocoagulant were characterized via Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and morphological analysis via Field Emission Scanning Electron Microscopy (FESEM). It was used to treat municipal wastewater. The treated wastewater quality was analyzed by jar test method with dosage of biocoagulant used was 0.6g/L. Result showed that the 10% (D10), 50% (D50) and 90% (D90) distribution of micronsized CP had particle size of 0.3675 µm, 0.8433 µm and 1.9537 µm respectively. The nanosized CP was 0.4473nm (D10), 2.3758nm (D50) and 2.9938nm (D90). Characterization of biocoagulant via FTIR revealed the appearance of O-H, C=O, C-H and C-O-C bond which contribute to particle interaction for turbidity reduction of wastewater. Jar test analysis found that at 3% micronsized CP and 7% nanosized CP were able to reduce turbidity up to 59.65% and 65.27% respectively. Both size of biocoagulant slightly changed the pH of treated wastewater to neutral, increased in dissolved oxygen (DO) and reduced in total suspended solid (TSS). Overall, nanosized CP was found more effective as compared to micronsized CP.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1248 ◽  
Author(s):  
Yuhua Zhou ◽  
Jing Lei ◽  
Yu Zhang ◽  
Jing Zhu ◽  
Yanna Lu ◽  
...  

Industrial wastewater and sewage are both important sources of heavy metals and metalloids in urban wastewater treatment plants (WWTPs). China has made great efforts to control heavy metal and metalloid pollution by setting discharge limits for WWTPs. There is, however, limited discharge data and no systematic methodology for the derivation of discharge limits. In this study, 14 heavy metals and metalloids (Hg, alkyl mercury, As, Cd, Cr, Cr6+, Pb, Ni, Be, Ag, Cu, Zn, Mn, Se) that are listed in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were selected for the analysis of discharge characteristics while using the supervised monitoring data from more than 800 WWTPs located in nine provinces in China. Of the 14 heavy metals and metalloids, all but alkyl mercury were detected in the discharge water. There was a high rate of detection of As, Cu, Mn, Se, and there were some samples that exceeded the standard concentrations of Cr, Cr6+, Pb, and Ni. Removal rates of Hg, As, Cd, Cr, Cr6+, Pb, Ni, Cu, Zn, Mn, and Se were higher than 40%, comparable to values from other countries. Hg and As were selected to analyze the influencing factors of effluent and derive discharge limits of WWTPs using a statistical method, because these two metals had more detected data than other metals. The study used supervised monitoring data from Zhejiang WWTPs with 99 for Hg and 112 for As. Based on the delta-lognormal distribution, the results showed that geographic location was significantly closely correlated with Hg (P = 0.027 < 0.05) and As (P ≈ 0 < 0.05) discharge concentrations, while size (for Hg P = 0.695 > 0.05, for As P = 0.088 > 0.05) and influent concentration (R2 < 0.5) were not. Derived Hg and As discharge limits suggest that it is necessary to establish stricter discharge limits for WWTPs, which is more consistent with the real-world situation in China. The study here comprehensively researches the discharge characteristics of heavy metals and metalloids in effluent of WWTPs in China, and developed for the first time in China heavy metals and metalloids discharge limits based on statistical methods. The results may inform special discharge limit settings for WWTPs in China.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1414 ◽  
Author(s):  
I-Tae Kim ◽  
Young-Seok Yoo ◽  
Young-Han Yoon ◽  
Ye-Eun Lee ◽  
Jun-Ho Jo ◽  
...  

The development of cost-effective methods, which generate minimal chemical wastewater, for methanol production is an important research goal. In this study, treated wastewater (TWW) was utilized as a culture solution for methanol production by mixed methanotroph species as an alternative to media prepared from commercial or chemical agents, e.g., nitrate mineral salts medium. Furthermore, a realistic alternative for producing methanol in wastewater treatment plants using biogas from anaerobic digestion was proposed. By culturing mixed methanotroph species with nitrate and phosphate-supplemented TWW in municipal wastewater treatment plants, this study demonstrates, for the first time, the application of biogas generated from the sludge digester of municipal wastewater treatment plants. NaCl alone inhibited methanol dehydrogenase and the addition of 40 mM formate as an electron donor increased methanol production to 6.35 mM. These results confirmed that this practical energy production method could enable cost-effective methanol production. As such, methanol produced in wastewater treatment plants can be used as an eco-friendly energy and carbon source for biological denitrification, which can be an alternative to reducing the expenses required for the waste water treatment process.


2008 ◽  
Vol 58 (2) ◽  
pp. 435-438 ◽  
Author(s):  
M. Kornaros ◽  
C. Marazioti ◽  
G. Lyberatos

SBRs are usually preferred as small and decentralized wastewater treatment systems. We have demonstrated previously that using a frequent enough switching between aerobic and anoxic conditions and a specific to the treated wastewater aerobic to anoxic phase ratio, it is possible to by-pass the second step of nitrification (i.e. conversion of nitrite to nitrate nitrogen). This innovative process for nitrate by-pass has been branded as UP-PND (University of Patras-Partial Nitrification Denitrification) (WO 2006/129132). The proved methodology was successfully transferred from a lab-scale SBR reactor treating synthetic wastewater to a pilot-scale SBR system treating real wastewater. In this work we present the results from the operation of this pilot-scale SBR, constructed in the Wastewater Treatment Plant of Patras (Greece), using 6-hour, 8-hour and 12-hour cycles. It is demonstrated that three pairs of aerobic/anoxic phases with a relative duration of 1:2 (8-hour cycle) and 2:3 (12-hour cycle) secures the desired by-pass of nitrate production.


2009 ◽  
Vol 60 (2) ◽  
pp. 525-531 ◽  
Author(s):  
R. Le Hyaric ◽  
J.-P. Canler ◽  
B. Barillon ◽  
P. Naquin ◽  
R. Gourdon

The objective of this study was to analyze the composition of the screenings sampled from three municipal wastewater treatment plants (wwtp) located in the Region Rhône-Alpes, France. The plants were equipped with multi screening stages with gap sizes ranging from 60 to 3 mm. Waste production flows from each plant were monitored over at least 48 hours in each sampling campaign in order to calculate average production rates. Waste samples of at least 7 kg were collected from each screening stage in each plant at different seasons to evaluate the influence of different parameters on the composition of the waste. An overall 30 samples were thereby collected between May 2007 and February 2008, dried at 80°C for a week, and subsequently hand sorted into 10 fractions of waste materials. Results showed that the average production varied between 0.53 and 3.49 kg (wet mass) per capita per year. The highest production rates were observed during or immediately after rainy weather conditions. The dry matter content ranged between 14.4 and 29.2% of wet mass, and the volatile matter content was between 70.0 and 90.5% of dry mass. The predominant materials in the screenings were found to be sanitary textiles which accounted for 65.2% to 73.6% of dry weight and fines (&lt;20 mm) which accounted for 15.2% to 18.2% of dry weight. These proportions were relatively similar in each plant and each sampling campaign.


Sign in / Sign up

Export Citation Format

Share Document