scholarly journals Induction of Systematic Resistance in Soybean Plants against Fusarium Wilt Disease by Seed Treatment with Benzothiadiazole and Humic Acid

2011 ◽  
Vol 3 (2) ◽  
pp. 80-89 ◽  
Author(s):  
Montaser Fawzy ABDEL-MONAIM ◽  
Mamdoh Ewis ISMAIL ◽  
Kadry Mohamed MORSY

The ability of benzothiadiazole (BTH), humic acid (HA) and their combination when used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Both inducers and their combination were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations i. e Minia and New Valley governorates. The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except number of branches plant-1, and seed yield. Application of BTH (0.25) + HA (4 g/l) was the most potent in this respect treatment. Soybean seed soaking in BTH+ HA recorded the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. Whereas, HA treatment was recorded the lowest increased of these oxidative enzymes. Also, similar results were obtained in case of total phenol but HA increased the total phenol more than BTH in all tested cultivars.

Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1036-1042 ◽  
Author(s):  
C. A. Bradley ◽  
G. L. Hartman ◽  
L. M. Wax ◽  
W. L. Pedersen

Different herbicides were applied to soybean plants in field plots planted to different soybean cultivars located at four locations in Illinois between 1997 and 2000. Treatments varied from hand weeded to preemergence herbicides to postemergence herbicides. Soybean seeds were harvested and evaluated for different seed quality parameters. The percentage of seeds infected with Phomopsis spp. ranged from 1 to 40%, and the percentage of seeds infected with Cercospora kikuchii was low, ranging from 0 to 4%. Herbicides had little or no effect on seed quality parameters such as percent germination and incidence of seed pathogens or on protein and oil concentrations. Soybean seed quality was affected by Phomopsis spp. in that there were significant (P ≤ 0.05) inverse correlations between Phomopsis spp. incidence and percentage seed germination. It appears that Phomopsis spp. may be a more prevalent seed pathogen than C. kikuchii for soybean fields in central to northern Illinois.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 530-536 ◽  
Author(s):  
J. P. Soto-Arias ◽  
G. P. Munkvold

Infection of soybean by Bean pod mottle virus (BPMV) or Soybean mosaic virus (SMV) has been reported to increase susceptibility to seed infection by Phomopsis spp., but the mechanism is unclear. Effects of virus infection on susceptibility to Phomopsis longicolla were studied in greenhouse experiments. Three soybean cultivars were inoculated with BPMV at growth stage V2 to V3, and with P. longicolla at R3, R5, or R7. Inoculation with BPMV did not increase the incidence of stem infection by P. longicolla, but it increased susceptibility to seed infection of cultivars Spansoy 201 at R5, and Pioneer brand 92M02 at R3, R5, and R7. A delay in maturity was observed only in 92M02. Thus, BPMV predisposed soybean plants to seed infection by P. longicolla, but this predisposition was not due solely to prolonging maturation. In separate experiments, two soybean cultivars were inoculated with SMV (V2 to V3) and P. longicolla (R3 and R5). Inoculation with SMV did not increase the incidence of stem or seed infection by P. longicolla. The SMV–Phomopsis spp. relationship may be cultivar and strain dependent. Results suggest that the risk of soybean seed infection by P. longicolla may be higher when BPMV vector populations are high and BPMV infection is widespread.


2017 ◽  
Vol 6 (1) ◽  
pp. 01-15
Author(s):  
Montaser F. Abdel-Monaim

Rhizoctonia solani was found to be associated with root rot symptoms of guar plants collected from different fields in New Valley governorate, Egypt. All the obtained isolates were able to attack guar plants (cv. Local) causing damping-off and root rot diseases. R. solani isolates No. 8 (RG8) was the more virulent ones in the pathogenicity tests. Salicylic acid (SA) and Pseudomonas fluorescens (PF) individually or in combination were examined for their potential in suppression damping-off and root rot and growth promotion of guar plants in vitro and in vivo. Both SA and P. fluorescens either individually or in combination inhibited the growth of the tested pathogenic fungi.SA combined with P. fluorescens recorded the highest inhibited growth followed by P. fluorescens alone. Under greenhouse and field conditions, all treatments significantly reduced damping-off and root rot severity. The combination of SA and P. fluorescens was more effective than using them individually.  Under field conditions, all these treatments significantly increased growth parameters (plant height and No. of branches plant-1) and yield components (No. of pods plant-1, weight of 100 seeds and total yield fed.-1 and Guaran content (gm plant-1) in both locations (El-Kharga and Mallawy Agric. Res. Stations) during growing season 2014.The combination of SA and P. fluorescens were recorded the highest growth parameters and yield components. Generally, the combination of SA and P. fluorescens recorded the best results for controlling damping-off and root rot diseases in greenhouse and field with addition improved plant growth and increased yield components in the field. In physiological studies, activity of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), pathogenesis related (PR) protein (chitinase and β 1,3 gluconase), were increased in inoculated and non-inoculated plants treated with the SA and P. fluorescens either individually or in combination, during the experimental period. The combination of SA and P. fluorescens recorded the highest increase in activity of all enzymes.  In general, the activity of these enzymes begins to accumulate after two days of treatment and reached maximum levels at 6 to 10 days, then the activities of these enzymes were decreased progressively. On the other hand, total phenols and lignin increased in guar plants inoculated with R. solani and treated with SA and P. fluorescens individually or in combination. The highest accumulation of phenols was recorded 8th days from application, while lignin recorded the highest level at 10th days from application. In the end, these results suggested that SA and P. fluorescens either individually or in combination may play an important role in controlling the guar damping-off and root rot diseases, though they have induction of systemic resistance in guar plants.


Mycobiology ◽  
2011 ◽  
Vol 39 (4) ◽  
pp. 290-298 ◽  
Author(s):  
Montaser Fawzy Abdel-Monaim ◽  
Mamdoh Ewis Ismail ◽  
Kadry Mohamed Morsy

2017 ◽  
Vol 38 (1) ◽  
pp. 57
Author(s):  
Daniele Piano Rosa ◽  
Danúbia Aparecida Costa Nobre ◽  
Diego Santos Oliveira ◽  
Francisco Charles dos Santos Silva ◽  
André Ricardo Gomes Bezerra ◽  
...  

This study aimed to assess the effect of genetic diversity on physiological quality of soybean seeds stored in cold chamber and under environmental conditions. Ten cultivars were assessed in a randomized factorial design (2x10). Factor 1 corresponded to two storage conditions and factor 2 to ten soybean cultivars, with four replications. The evaluated variables were total germination (G%), first count of germination (F%), percentage of abnormal seedlings (AS%), germination speed index (GSI), water content (WC), electrical conductivity (EC), dry matter of seedlings (DMS) and length of seedlings (LS). Data underwent ANOVA, followed by Scott Knott test, as well as multivariate analysis of genetic diversity. The results showed a higher physiological quality for seeds under cold storage. Half of the cultivars (FPS Júpiter, FPS Urano, FPS Antares, FPS Netuno and CD 250) presented high germination rates and seed vigor, being thus indicated as high-standard materials for further breeding programs. Besides that, storage environment had influence on the clustering of soybean cultivars. Moreover, cultivars had genetic dissimilarity for almost all assessed traits as G%, GSI, F%, AS%, EC, DMS and LS.


2004 ◽  
Vol 61 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Roberval Daiton Vieira ◽  
Angelo Scappa Neto ◽  
Sonia Regina Mudrovitsch de Bittencourt ◽  
Maristela Panobianco

Vigor of soybean [Glycine max (L.) Merrill] seeds can be evaluated by measuring the electrical conductivity (EC) of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests) were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE). Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 449-449 ◽  
Author(s):  
J. E. Kurle ◽  
S. L. Gould ◽  
S. M. Lewandowski ◽  
S. Li ◽  
X. B. Yang

In August 2002, soybean (Glycine max (L.) Merr.) plants exhibiting foliar and root symptoms typical of sudden death syndrome were observed in Blue Earth and Steele counties in south-central Minnesota. Leaf symptoms ranging from small chlorotic spots to prominent interveinal necrosis were present on soybean plants at the R6 to R7 growth stage. As plants matured, complete defoliation took place with only petioles remaining. Symptomatic plants had necrotic secondary roots, truncated taproots, and discolored cortical tissue at the soil line. Blue sporodochia containing macroconidia were observed on the taproot of affected plants at both locations (3,4). Multiple cultures from both locations were obtained by transferring macroconidia from the sporodochia to potato dextrose agar (PDA) and modified Nash-Snyder Medium (NSM) (3). After 14 days, isolations were made from fungal colonies exhibiting bluish pigmentation and masses of bluish macroconidia (4). The isolates grew slowly, developed a bluish color, and formed sporodochia containing abundant macroconidia on NSM. These isolates were identified as Fusarium solani (Mart.) Sacc. f. sp. glycines based on colony characteristics and morphology of macroconidia (2). Pathogenicity tests were conducted with a single isolate from each location. The isolate from Blue Earth County was inoculated as mycelia in a plug of media onto taproots of plants of susceptible cvs. Williams 82 and Spencer at the V2 growth stage. Chlorotic spots appeared on leaves after 12 days of growth at 22 to 25°C in the greenhouse. Interveinal necrosis appeared after 15 days (4). The isolate from Steele County was used to inoculate the susceptible cv. Great Lakes 3202. Sorghum seed (3 cm3) infested with mycelia of the isolate were placed 2 to 3 cm below soybean seed planted in Cone-Tainers. Noninfested sorghum seed was used as a control. Plants were maintained for 21 days at 22 to 28°C in the greenhouse. Chlorotic spots appeared on leaves of inoculated plants within 21 days after planting followed by the development of interveinal chlorosis and necrosis (1). Molecular analysis further supported the identification of the Steele County isolate as F. solani f. sp. glycines. Polymerase chain reaction with specific primers Fsg1 and Fsg2 of total genomic DNA extracted from the Steele County isolate amplified a 438-bp DNA fragment identical with that extracted from previously identified isolates of F. solani f. sp. glycines (1). In 2002, symptoms of sudden death syndrome were also reported in Olmsted, Freeborn, and Mower counties. Although studies are needed to determine the distribution of sudden death syndrome in the state, the occurrence of the symptoms at multiple locations suggests that F. solani f. sp. glycines is widely distributed in southeast and south-central Minnesota. The counties where sudden death syndrome symptoms were reported are located in the most productive soybean-growing region of Minnesota. Sudden death syndrome could be a serious threat to soybean production in this area since poorly drained, heavy, clay soils are common, and soil temperatures 18°C or less are normal before the end of May. References: (1) S. Li et al. Phytopathology 90:491, 2000. (2) K. W. Roy. Plant Dis. 81:566, 1997. (3) K. W. Roy et al. Plant Dis. 81:1100, 1997. (4) K. W. Roy. Plant Dis. 81:259, 1997.


2020 ◽  
Vol 3 (2) ◽  
pp. 56-64
Author(s):  
Rahayu Arraudah ◽  
Yudhy Harini Bertham ◽  
Hesti Pujiwati ◽  
Bambang Gonggo Murcitro ◽  
Entang Inoriah Sukarjo

Soybean is one of the most popular food crops for the community, but the needs for soybeans have not been fulfilled by soybean production. To meet the needs of soybeans, it is necessary to intensify agricultural land in Ultisol. This study aims to obtain the optimum concentration of humic acid and dosage of the Arbuscular Mycorrhizal Fungi (AMF) to increase soybean plants' production in Ultisols. This research was conducted from January to April 2020 in Beringin Raya Village, Muara Bangkahulu District, Bengkulu City, at an altitude of 10 m above sea level. The research design used a Randomized Complete Block Design (RCBD) two factors with three replications, arranged factorially in experimental units. The first factor is the concentration of humic acid, consisting of 4 levels: 0, 15, 30, and 45 mL L-1 . The second factor is the dose of AMF, consisted of 3 levels, namely: 0, 2.5, and 5 g plant-1. The results showed that the maximum soybean growth and yield in Ultisols were obtained from the humic acid concentration at 45 mL L-1 at the dose of AMF at 2.5 g plant-1 . The resulting production potential is 1.99 tons ha-1 . The administration of humic acid or AMF independently at this research stage had not yet given a maximum response to the growth and yield of soybean in Ultisol.


Sign in / Sign up

Export Citation Format

Share Document