scholarly journals A Neural Network Classification Model Based on Covering and Immune Clustering Algorithm

Author(s):  
Fang Zhao

Inspired by the information processing mechanism of the human brain, the artificial neural network (ANN) is a classic data mining method and a powerful soft computing technique. The ANN provides a valuable tool for information processing and pattern recognition, thanks to its advantages in distributed storage, parallel processing, fast problem-solving and adaptive learning. The constructive neural network (CNN) is a popular emerging neural network model suitable for processing largescale data. In this paper, a novel neural network classification model was established based on the covering algorithm (CA) and the immune clustering algorithm (ICA). The CA is highly comprehensible, and enjoys fast computing speed, and high recognition rate. However, the learning effect of this algorithm is rather poor, because the training set is randomly selected from the original data, and the number of nodes (covering number) and area being covered are greatly affected by the learning sequence. To solve the problem, the ICA was introduced to preprocess the data samples, and calculate the cluster centers based on the antibody-antigen affinity. The CA and the ICA work together to determine the covering center and radius automatically, and convert them into the weights and thresholds of the hidden layer of neural network. The number of hidden layer neurons equals the number of covering. In addition, the McCulloch-Pitts (M-P) neurons were adopted for the output layer. Based on the input feature of the hidden layer, the output feature completes the mapping from input to output, creating the final classes of the original data. The introduction of the ICA fully solves the defect of the CA. Finally, our neural network classification model was verified through experiments on real-world datasets.

2020 ◽  
pp. 487-501
Author(s):  
Steven Walczak ◽  
Senanu R. Okuboyejo

This study investigates the use of artificial neural networks (ANNs) to classify reasons for medication nonadherence. A survey method is used to collect individual reasons for nonadherence to treatment plans. Seven reasons for nonadherence are identified from the survey. ANNs using backpropagation learning are trained and validated to produce a nonadherence classification model. Most patients identified multiple reasons for nonadherence. The ANN models were able to accurately predict almost 63 percent of the reasons identified for each patient. After removal of two highly common nonadherence reasons, new ANN models are able to identify 73 percent of the remaining nonadherence reasons. ANN models of nonadherence are validated as a reliable medical informatics tool for assisting healthcare providers in identifying the most likely reasons for treatment nonadherence. Physicians may use the identified nonadherence reasons to help overcome the causes of nonadherence for each patient.


2012 ◽  
Vol 433-440 ◽  
pp. 4320-4323 ◽  
Author(s):  
Jing Wang ◽  
Jin Ying Song ◽  
Ai Qing Tang

This article reports the use of BP neural network for evaluation of the appearance of garment after dry wash. The selected data about parameters of fabrics and interlinings are analyzed by principal analysis and eight principal components are obtained through this method. A BP neural network with a single hidden layer is constructed including eight input nodes, six hidden nodes and one output nodes. During training the network with a back-propagation algorithm, the eight principal components are used as input parameters, while the rate of the appearance of the garment are used as output parameters. The weight values are modified with momentum and learning rate self-adaptation to solve the two defects of the BP network. All original data are preprocessed and the learning process is successful in achieving a global error minimum. The rate of the appearance can be evaluated with this training network and there is a good agreement between the evaluated and tested values.


2021 ◽  
Author(s):  
Yunfan Chen ◽  
Chong Zhang ◽  
Chengyu Liu ◽  
Yiming Wang ◽  
Xiangkui Wan

Abstract Atrial fibrillation is one of the most common arrhythmias in clinics, which has a great impact on people's physical and mental health. Electrocardiogram (ECG) based arrhythmia detection is widely used in early atrial fibrillation detection. However, ECG needs to be manually checked in clinical practice, which is time-consuming and labor-consuming. It is necessary to develop an automatic atrial fibrillation detection system. Recent research has demonstrated that deep learning technology can help to improve the performance of the automatic classification model of ECG signals. To this end, this work proposes effective deep learning based technology to automatically detect atrial fibrillation. First, novel preprocessing algorithms of wavelet transform and sliding window filtering (SWF) are introduced to reduce the noise of the ECG signal and to filter high-frequency components in the ECG signal, respectively. Then, a robust R-wave detection algorithm is developed, which achieves 99.22% detection sensitivity, 98.55% positive recognition rate, and 2.25% deviance on the MIT-BIH arrhythmia database. In addition, we propose a feedforward neural network (FNN) to detect atrial fibrillation based on ECG records. Experiments verified by a 10-fold cross-validation strategy show that the proposed model achieves competitive detection performance and can be applied to wearable detection devices. The proposed atrial fibrillation detection model achieves an accuracy of 84.00%, the detection sensitivity of 84.26%, the specificity of 93.23%, and the area under the receiver working curve of 89.40% on the mixed dataset composed of Challenge2017 database and MIT-BIH arrhythmia database.


2011 ◽  
Vol 271-273 ◽  
pp. 597-602
Author(s):  
Gang Yan ◽  
Hai Dong Kong ◽  
Yang Yu ◽  
Xiao Xia Zheng

A noisy speech recognition method based on improved RBF neural network is presented, which the parameters of hidden layer are trained dynamically, and Akaike’s final prediction error standard (FPE) is employed to simplify the network. Comparing with two other training methods of RBF network, experimental results based on noisy speech samples show that this method achieves excellent performance in terms of recognition rate and recognition speed.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2473
Author(s):  
Junyao Wang ◽  
Yuehong Dai ◽  
Xiaxi Si

Background: This paper focuses on the characteristics of lower limb EMG signals for common movements. Methods: We obtained length data for lower limb muscles during gait motion using software named OpenSim; statistical product and service solutions (SPSS) were utilized to study the correlation between each muscle, based on gait data. Low-correlation muscles in different regions were selected; inertial measurement unit (IMU) and EMG sensors were used to measure the lower limb angles and EMG signals when on seven kinds of slope, in five kinds of gait (walking on flat ground, uphill, downhill, up-step and down-step) and four kinds of movement (squat, lunge, raised leg and standing up). Results: After data denoising and feature extraction, we designed a double hidden-layer BP neural network to recognize the above motions according to EMG signals. Results show that EMG signals of selected muscles have a certain periodicity in the process of movement that can be used to identify lower limb movements. Conclusions: It can be seen, after the recognition of different proportions of training and testing sets that the average recognition rate of the BP neural network is 86.49% for seven gradients, 93.76% for five kinds of gait and 86.07% for four kinds of movements.


2020 ◽  
Vol 18 (8) ◽  
pp. 19-30
Author(s):  
Vo Hoang Trong ◽  
Gwang-Hyun Yu ◽  
Dang Thanh Vu ◽  
Ju-Hwan Lee ◽  
Nguyen Huy Toan ◽  
...  

2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987245 ◽  
Author(s):  
Zuojin Li ◽  
Qing Yang ◽  
Shengfu Chen ◽  
Wei Zhou ◽  
Liukui Chen ◽  
...  

The study of the robust fatigue feature learning method for the driver’s operational behavior is of great significance for improving the performance of the real-time detection system for driver’s fatigue state. Aiming at how to extract more abstract and deep features in the driver’s direction operation data in the robust feature learning, this article constructs a fuzzy recurrent neural network model, which includes input layer, fuzzy layer, hidden layer, and output layer. The steering-wheel direction sensing time series sends the time series to the input layer through a fixed time window. After the fuzzification process, it is sent to the hidden layer to share the weight of the hidden layer, realize the memorization of the fatigue feature, and improve the feature depth capability of the steering wheel angle time sequence. The experimental results show that the proposed model achieves an average recognition rate of 87.30% in the fatigue sample database of real vehicle conditions, which indicates that the model has strong robustness to different subjects under real driving conditions. The model proposed in this article has important theoretical and engineering significance for studying the prediction of fatigue driving under real driving conditions.


Author(s):  
R. R. Janghel ◽  
Ritu Tiwari ◽  
Rahul Kala ◽  
Anupam Shukla

In this paper a new approach for the prediction of breast cancer has been made by reducing the features of the data set using PCA (principal component analysis) technique and prediction results by simulating different models namely SANE (Symbiotic, Adaptive Neuro-evolution), Modular neural network, Fixed architecture evolutionary neural network (F-ENN), and Variable Architecture evolutionary neural network (V-ENN). The dimensionality reduction of the inputs achieved by PCA technique to an extent of 33% and further different models of the soft computing technique simulated and tested based on efficiency to find the optimum model. The SANE model includes maximum number of connections per neuron as 24, evolutionary population size of 1000, maximum neurons in hidden layer as 12, SANE elite value of 200, mutation rate of 0.2, and number of generations as 100. The simulated results reflect that this is the best model for the prediction of the breast cancer disease among the other models considered in the experiment and it can effectively assist the doctors for taking the diagnosis results as its efficiency found to be 98.52% accuracy which is highest.


2011 ◽  
Vol 217-218 ◽  
pp. 413-418
Author(s):  
Xue Mei Hou

Considering the actuality of current speech recognition and the characteristic of RBF neural network, a noise-robust speech recognition system based on RBF neural network is proposed with the entire-supervised algorithm. If the traditional clustering algorithm is employed, there is a flaw that the node center of hidden layer is always sensitive to the initial value, but if the entire-supervised algorithm is used, the flaw will not turn up, and the classification ability of RBF network will be enhanced. Experimental results show that, compared with the traditional clustering algorithm, the entire-supervised algorithm is of higher recognition rate in different SNRs than that of clustering algorithm.


Sign in / Sign up

Export Citation Format

Share Document