scholarly journals A Semi Smart Adaptive Approach for Trash Classification

Author(s):  
Faisal Alzyoud ◽  
Waleed Maqableh ◽  
Faiz Al Shrouf

Waste management and recycling play a crucial factor in world economy sustainability as they prevent the squander of useful materials which can lead in garbage landfill reduction and cost reduction respectively. Garbage sorting into different categories plays an important role in recycling and waste management; but unfortunately, most garbage sorting still depends on labor which has a reverse impact on mankind and world economy, so there are different approaches to replace human separation by intelligent machines. In this article, we propose a comprehensive approach, Semi Smart Trash Separator to classify garbage and trash using the following technique: precycling by assigning a barcode or QR code to each material, which will enable the separation process as per assigned code; Magnetic separator helps in collecting conductive metal, then the non-conductive materials are classified according to their hardness. This test is a unique idea used in trash classification. Finally, if there is ambiguity in waste material classification barcode or material properties, the classification will be done using neural network techniques depending on the shapes of trash. Mat lab software is modified to handle convolutional neural networks in the image recognition (AlexNet and GoogLeNet) to be used in the trash classification processes and to test their accuracy. The tests are performed using a trustable data set. The material recognition accuracy rate from the obtained results on AlexNet and GoogLeNet are 75% and 83% respectively.

2020 ◽  
Vol 4 (4) ◽  
pp. 281-290
Author(s):  
Tingzhu Chen ◽  
Yaoyao Qian ◽  
Jingyu Pei ◽  
Shaoteng Wu ◽  
Jiang Wu ◽  
...  

Oracle bone script recognition (OBSR) has been a fundamental problem in research on oracle bone scripts for decades. Despite being intensively studied, existing OBSR methods are still subject to limitations regarding recognition accuracy, speed and robustness. Furthermore, the dependency of these methods on expert knowledge hinders the adoption of OBSR systems by the general public and also discourages social outreach of research outputs. Addressing these issues, this study proposes an encoding-based OBSR system that applies image pre-processing techniques to encode oracle images into small matrices and recognize oracle characters in the encoding space. We tested our methods on a collection of oracle bones from the Yin Ruins in XiaoTun village, and achieved a high accuracy rate of 99% within a time range of milliseconds.


2021 ◽  
Vol 39 (1B) ◽  
pp. 1-10
Author(s):  
Iman H. Hadi ◽  
Alia K. Abdul-Hassan

Speaker recognition depends on specific predefined steps. The most important steps are feature extraction and features matching. In addition, the category of the speaker voice features has an impact on the recognition process. The proposed speaker recognition makes use of biometric (voice) attributes to recognize the identity of the speaker. The long-term features were used such that maximum frequency, pitch and zero crossing rate (ZCR).  In features matching step, the fuzzy inner product was used between feature vectors to compute the matching value between a claimed speaker voice utterance and test voice utterances. The experiments implemented using (ELSDSR) data set. These experiments showed that the recognition accuracy is 100% when using text dependent speaker recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aolin Che ◽  
Yalin Liu ◽  
Hong Xiao ◽  
Hao Wang ◽  
Ke Zhang ◽  
...  

In the past decades, due to the low design cost and easy maintenance, text-based CAPTCHAs have been extensively used in constructing security mechanisms for user authentications. With the recent advances in machine/deep learning in recognizing CAPTCHA images, growing attack methods are presented to break text-based CAPTCHAs. These machine learning/deep learning-based attacks often rely on training models on massive volumes of training data. The poorly constructed CAPTCHA data also leads to low accuracy of attacks. To investigate this issue, we propose a simple, generic, and effective preprocessing approach to filter and enhance the original CAPTCHA data set so as to improve the accuracy of the previous attack methods. In particular, the proposed preprocessing approach consists of a data selector and a data augmentor. The data selector can automatically filter out a training data set with training significance. Meanwhile, the data augmentor uses four different image noises to generate different CAPTCHA images. The well-constructed CAPTCHA data set can better train deep learning models to further improve the accuracy rate. Extensive experiments demonstrate that the accuracy rates of five commonly used attack methods after combining our preprocessing approach are 2.62% to 8.31% higher than those without preprocessing approach. Moreover, we also discuss potential research directions for future work.


2022 ◽  
Vol 12 (2) ◽  
pp. 853
Author(s):  
Cheng-Jian Lin ◽  
Yu-Cheng Liu ◽  
Chin-Ling Lee

In this study, an automatic receipt recognition system (ARRS) is developed. First, a receipt is scanned for conversion into a high-resolution image. Receipt characters are automatically placed into two categories according to the receipt characteristics: printed and handwritten characters. Images of receipts with these characters are preprocessed separately. For handwritten characters, template matching and the fixed features of the receipts are used for text positioning, and projection is applied for character segmentation. Finally, a convolutional neural network is used for character recognition. For printed characters, a modified You Only Look Once (version 4) model (YOLOv4-s) executes precise text positioning and character recognition. The proposed YOLOv4-s model reduces downsampling, thereby enhancing small-object recognition. Finally, the system produces recognition results in a tax declaration format, which can upload to a tax declaration system. Experimental results revealed that the recognition accuracy of the proposed system was 80.93% for handwritten characters. Moreover, the YOLOv4-s model had a 99.39% accuracy rate for printed characters; only 33 characters were misjudged. The recognition accuracy of the YOLOv4-s model was higher than that of the traditional YOLOv4 model by 20.57%. Therefore, the proposed ARRS can considerably improve the efficiency of tax declaration, reduce labor costs, and simplify operating procedures.


2021 ◽  
Vol 336 ◽  
pp. 05008
Author(s):  
Cheng Wang ◽  
Sirui Huang ◽  
Ya Zhou

The accurate exploration of the sentiment information in comments for Massive Open Online Courses (MOOC) courses plays an important role in improving its curricular quality and promoting MOOC platform’s sustainable development. At present, most of the sentiment analyses of comments for MOOC courses are actually studies in the extensive sense, while relatively less attention is paid to such intensive issues as the polysemous word and the familiar word with an upgraded significance, which results in a low accuracy rate of the sentiment analysis model that is used to identify the genuine sentiment tendency of course comments. For this reason, this paper proposed an ALBERT-BiLSTM model for sentiment analysis of comments for MOOC courses. Firstly, ALBERT was used to dynamically generate word vectors. Secondly, the contextual feature vectors were obtained through BiLSTM pre-sequence and post-sequence, and the attention mechanism that could calculate the weight of different words in a sentence was applied together. Finally, the BiLSTM output vectors were input into Softmax for the classification of sentiments and prediction of the sentimental tendency. The experiment was performed based on the genuine data set of comments for MOOC courses. It was proved in the result that the proposed model was higher in accuracy rate than the already existing models.


Author(s):  
Ahmet ÇELİK

People learn by examining, observing and researching their environment. They actually gains experience from what they have learned. By using the experience they have gained, they can adapt to the new situation they encounter and make decisions. People always make decisions by comparing their previous knowledge while describing objects and classifying them. Similarities and differences to previously learned objects are very effective in decision making. It has been shown in the studies that the experiential learning method can also be used on machines. Intelligent machines and devices that use machine learning methods in their structure are widely used in many areas. Machine learning can be performed using different algorithms. These algorithms use the attributes of the objects in the data set when making decisions. Similarities and differences in the attributes of objects are obtained by comparing them with previous experiences. As a result of the comparison, a decision is made and predictions are made about the classes of the objects. In this study, kNN machine learning algorithm, which is a supervised learning method, was used on the Zoo dataset. In this data set, there are attributes of common living things. By using these attributes, the classes of living things in the data set are determined. The “k” neighbor value and weight parameter selected in the kNN algorithm affect the learning success. In this study, the effect of two parameters used in the kNN algorithm on learning success is shown. According to the results obtained, the "k=1" neighbor value and the "Distance Weight" parameter were selected and the highest success result was obtained.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dongsheng Wang ◽  
Jun Feng ◽  
Xinpeng Zhao ◽  
Yeping Bai ◽  
Yujie Wang ◽  
...  

It is difficult to form a method for recognizing the degree of infiltration of a tunnel lining. To solve this problem, we propose a recognition method by using a deep convolutional neural network. We carry out laboratory tests, prepare cement mortar specimens with different saturation levels, simulate different degrees of infiltration of tunnel concrete linings, and establish an infrared thermal image data set with different degrees of infiltration. Then, based on a deep learning method, the data set is trained using the Faster R-CNN+ResNet101 network, and a recognition model is established. The experiments show that the recognition model established by the deep learning method can be used to select cement mortar specimens with different degrees of infiltration by using an accurately minimized rectangular outer frame. This model shows that the classification recognition model for tunnel concrete lining infiltration established by the indoor experimental method has high recognition accuracy.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 894 ◽  
Author(s):  
Wanlu Jiang ◽  
Zhenbao Li ◽  
Jingjing Li ◽  
Yong Zhu ◽  
Peiyao Zhang

Aiming at addressing the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an axial piston pump fault diagnosis method that is based on the combination of Mel-frequency cepstrum coefficients (MFCC) and the extreme learning machine (ELM) is proposed. Firstly, a sound sensor is used to realize contactless sound signal acquisition of the axial piston pump. The wavelet packet default threshold denoises the original acquired sound signals. Afterwards, windowing and framing are added to the de-noised sound signals. The MFCC voiceprint characteristics of the processed sound signals are extracted. The voiceprint characteristics are divided into a training sample set and test sample set. ELM models with different numbers of neurons in the hidden layers are established for training and testing. The relationship between the number of neurons in the hidden layer and the recognition accuracy rate is obtained. The ELM model with the optimal number of hidden layer neurons is established and trained with the training sample set. The trained ELM model is applied to the test sample set for fault diagnosis. The fault diagnosis results are obtained. The fault diagnosis results of the ELM model are compared with those of the back propagation (BP) neural network and the support vector machine. The results show that the fault diagnosis method that is proposed in this paper has a higher recognition accuracy rate, shorter training and diagnosis times, and better application prospect.


2005 ◽  
Vol 4 (3) ◽  
pp. 1-27 ◽  
Author(s):  
Prema-chandra Athukorala

International product fragmentation—the cross-border dispersion of component production/assembly within vertically integrated production processes—is an important feature of the deepening structural interdependence of the world economy. This paper examines the implications of this phenomenon for global and regional trade patterns, with special emphasis on countries in East Asia, using a new data set culled from the United Nations Commodity Trade Statistics Database. It is found that, while “fragmentation trade” has generally grown faster than total world trade in manufacturing, the degree of dependence of East Asia on this new form of international specialization is proportionately larger than that of North America and Europe. The upshot is that international product fragmentation has made East Asian growth increasingly reliant on extra-regional trade, strengthening the case for a global, rather than a regional, approach to trade and investment policymaking.


Author(s):  
F. ROLI

Recently, a kind of structured neural networks (SNNs) explicitly devoted to multisensor image recognition and aimed at allowing the interpretation of the "network behavior" was presented in Ref. 1. Experiments reported in Ref. 1 pointed out that SNNs provide a trade-off between recognition accuracy and interpretation of the network behavior. In this paper, the combination of multiple SNNs, each of which has been trained on the same data set, is proposed as a means to improve recognition results, while keeping the possibility of interpreting the network behavior. A simple method for interpreting the "collective behaviors" of such SNN ensembles is described. Such an interpretation method can be used to understand the different kinds of "solutions" learned by the SNNs belonging to an ensemble. In addition, as compared with the interpretation method presented in Ref. 1, it is shown that the knowledge embodied in an SNN can be translated into a set of understandable "recognition rules". Experimental results on the recognition of multisensor remote-sensing images (optical and radar images) are reported in terms of both recognition accuracy and network-behavior interpretation. An additional experiment on a multisource remote-sensing data set is described to show that SNNs can also be effectively used for multisource recognition tasks.


Sign in / Sign up

Export Citation Format

Share Document