scholarly journals Effect of Pre-Exercise Heat Pack Treatment on Markers of Muscle Damage After Resistance Exercise

2021 ◽  
Vol 30 (2) ◽  
pp. 221-228
Author(s):  
Yuri Lee ◽  
Jinhee Woo ◽  
Hyung-pil Jun

PURPOSE: This study aimed to investigate the effect of pre-exercise heat pack treatment on muscle activity and markers of muscle damage after exercise-induced damage.METHODS: Ten healthy male university students were tested for 3 weeks. They were exposed to three conditions (non-warm-up exercise, warm-up exercise, and heat pack treatment) before exercise. The experiment was conducted at 1-week intervals for every participant. The warm-up exercise was performed by combining a modified active warm-up with a cycle ergometer and an isokinetic dynamometer. The main exercise, which modified the exercise-induced muscle damage protocol, was conducted by flexing and extending the knee joint using an isokinetic dynamometer. The heat pack treatment before the exercise involved moist heat application for 20 min.RESULTS: The changes in blood muscle fatigue markers and blood muscle damage markers were not significantly different between the groups (α>.05). However, significant differences were observed in the time immediately after exercise, 10-min recovery, 30-min recovery, and 60-min recovery (<i>p</i><.05). A statistically significant difference was observed in the change in pain in the heat pack treatment group (<i>p</i><.05).CONCLUSIONS: Heat pack treatment for 20 min before exercise did not minimize the muscle damage markers and fatigue markers following exercise-induced damage, but reduced immediate muscle soreness. Use of heat pack treatment was associated with a change in muscle activity and improvement in certain aspects of muscle soreness.

2011 ◽  
Vol 36 (6) ◽  
pp. 848-855 ◽  
Author(s):  
Renato Molina ◽  
Benedito Sérgio Denadai

This study aimed to investigate the dependence of oxygen uptake (VO2) kinetics on pedal cadence during moderate-intensity exercise following exercise-induced muscle damage (EIMD). Twenty untrained males were randomly assigned to a 50 revolution per minute (rpm) (age, 23.3 ± 1.8 years; VO2max, 38.9 ± 2.8 mL·kg–1·min–1) or 100 rpm group (age, 24.4 ± 3.5 years, VO2max, 42.9 ± 4.3 mL·kg–1·min–1). Participants completed “step” tests to moderate-intensity exercise from an unloaded baseline on a cycle ergometer before (baseline) and at 24 and 48 h after muscle-damaging exercise (10 sets of 10 eccentric contractions performed on an isokinetic dynamometer with a 2-min rest between each set). Pedal cadence was kept constant throughout each cycling trial (50 or 100 rpm). There were no changes in phase II pulmonary VO2 kinetics following EIMD for the 50 rpm group (baseline = 35 ± 4 s; 24 h = 35 ± 7 s; and 48 h = 36 ± 9 s). However, the phase II VO2 was significantly greater at 24 h (59 ± 27 s) compared with baseline (39 ± 6 s) and 48 h (40 ± 9 s) for the 100 rpm group. It is concluded that the effects of EIMD on phase II VO2 kinetics during moderate-intensity cycling exercise is dependent on pedal cadence. The slower VO2 kinetics after muscle damage suggests that type II fibers are involved during transition to moderate-intensity exercise at high pedal cadence.


Author(s):  
Yvoni Kyriakidou ◽  
Carly Wood ◽  
Chrystalla Ferrier ◽  
Alberto Dolci ◽  
Bradley Elliott

Abstract Background Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, muscle soreness and may cause subsequent exercise avoidance. Omega-3 (n-3) supplementation may minimise EIMD via its anti-inflammatory properties, however, its efficacy remains unclear. Methods Healthy males (n = 14, 25.07 ± 4.05 years) were randomised to 3 g/day n-3 supplementation (N-3, n = 7) or placebo (PLA, n = 7). Following 4 weeks supplementation, a downhill running protocol (60 min, 65% V̇O2max, − 10% gradient) was performed. Creatine kinase (CK), interleukin (IL)-6 and tumour necrosis factor (TNF)-α, perceived muscle soreness, maximal voluntary isometric contraction (MVIC) and peak power were quantified pre, post, and 24, 48 and 72 h post-EIMD. Results Muscle soreness was significantly lower in N-3 vs PLA group at 24 h post-EIMD (p = 0.034). IL-6 was increased in PLA (p = 0.009) but not in N-3 (p = 0.434) following EIMD, however, no significant differences were noted between groups. Peak power was significantly suppressed in PLA relative to pre-EIMD but not in N-3 group at 24 h post-EIMD. However, no significant difference in peak power output was observed between groups. MVIC, CK and TNF-α were altered by EIMD but did not differ between groups. Conclusion N-3 supplementation for 4 weeks may successfully attenuate minor aspects of EIMD. Whilst not improving performance, these findings may have relevance to soreness-associated exercise avoidance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mikio Shoji ◽  
Ryoichi Ema ◽  
Kazunori Nosaka ◽  
Akihiro Kanda ◽  
Kosuke Hirata ◽  
...  

The present study examined if the magnitude of changes in indirect muscle damage markers could be predicted by maximal voluntary isometric contraction (MVIC) torque changes from immediately to 1 day after eccentric exercise. Twenty-eight young men performed 100 maximal isokinetic (60°/s) eccentric contractions of the knee extensors. MVIC torque, potentiated doublet torque, voluntary activation (VA) during MVIC, shear modulus of rectus femoris (RF), vastus medialis and lateralis, and muscle soreness of these muscles were measured before, immediately after, and 1–3 days post-exercise. Based on the recovery rate of the MVIC torque from immediately to 1-day post-exercise, the participants were placed to a recovery group that showed an increase in the MVIC torque (11.3–79.9%, n = 15) or a no-recovery group that showed no recovery (−71.9 to 0%, n = 13). No significant difference in MVIC torque decrease immediately post-exercise was found between the recovery (−33 ± 12%) and no-recovery (−32 ± 9%) groups. At 1–3 days, changes in MVIC torque (−40 to −26% vs. −22 to −12%), potentiated doublet torque (−37 to −22% vs. −20 to −9%), and proximal RF shear modulus (29–34% vs. 8–15%) were greater (p &lt; 0.05) for the no-recovery than recovery group. No significant group differences were found for muscle soreness. The recovery rate of MVIC torque was correlated (p &lt; 0.05) with the change in MVIC torque from baseline to 2 (r = 0.624) or 3 days post-exercise (r = 0.526), or peak change in potentiated doublet torque at 1–3 days post-exercise from baseline (r = 0.691), but not correlated with the changes in other dependent variables. These results suggest that the recovery rate of MVIC torque predicts changes in neuromuscular function but not muscle soreness and stiffness following eccentric exercise of the knee extensors.


Author(s):  
R Candia Luján ◽  
RA Paredes Carrera ◽  
O Costa Moreira ◽  
KF Candia Sosa ◽  
JA De Paz Fernández

El masaje es una de las terapias más utilizadas para aliviar el dolor muscular tardío (DMT). El objetivo del presente estudio fue determinar la efectividad del masaje en el tratamiento del DMT, para lo cual se llevó a cabo una revisión sistemática en las bases de datos, Pubmed, Scopus, SportDiscus, Web of Science y el buscador Google académico, usando las palabras clave delayed onset muscle soreness y exercise induced muscle damage combinado con massage. Se incluyeron en el estudio 23 artículos en los cuales el 78% mostró disminución del DMT mientras que en el restante 22% no hubo mejoras o bien empeoró. El análisis de los estudios permite concluir que el masaje es una terapia efectiva en el tratamiento del dolor muscular tardío.


2017 ◽  
Vol 26 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Diego Marqués-Jiménez ◽  
Julio Calleja-González ◽  
Iñaki Arratibel-Imaz ◽  
Anne Delextrat ◽  
Fernando Uriarte ◽  
...  

2017 ◽  
Vol 42 (9) ◽  
pp. 978-985 ◽  
Author(s):  
Kenji Doma ◽  
Moritz Schumann ◽  
Anthony Scott Leicht ◽  
Brian Edward Heilbronn ◽  
Felipe Damas ◽  
...  

This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg−1·min−1; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%–20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.


Author(s):  
Muhammad Mustafa Qamar ◽  
Muhammad Shahid Javed ◽  
Muhammad Zahoor ul Hassan Dogar ◽  
Ayesha Basharat

Abstract Objective: To investigate the prophylactic effect of the active isolated stretching technique on exercise-induced muscle damage of wrist flexors. Method: The mixed model randomised controlled interventional study was conducted at the University of Sargodha, Sargodha, Pakistan, from November 2018 to May 2019, and comprised young adults who were untrained, sedentary and healthy who were randomly divided into intervention group A and control group B. Group A participants received self-assisted active isolated stretching before inducing muscle soreness of wrist flexors by eccentric exercises. Group B did not receive any intervention. The outcome measures were pain intensity, muscle soreness, pressure pain threshold, range of motion, and grip strength. Data were collected at baseline, after one hour, and daily from day 1 to 7 after inducing muscle soreness. Data were analysed using SPSS 21. Results: Of the 60 subjects, there were 30(50%) in each of the two groups. There were 14(23.3%) males and 46(76.7%) females. The overall mean age was 21.47±1.9 years. Group A showed early recovery in pain and muscle soreness compared to group B (p<0.05). Also, a limited deficit in the range of motion, grip strength, and pain pressure threshold was found in group A compared to group B (p<0.05). Conclusion: Active isolated stretching before strenuous, unaccustomed exercise was found to be useful in ameliorating the symptoms of muscle soreness. Key Words: Active isolated stretching, Muscle soreness, Exercise-induced muscle damage, Eccentric exercises. Continuous...


1999 ◽  
Vol 87 (4) ◽  
pp. 1360-1367 ◽  
Author(s):  
Katsuhiko Suzuki ◽  
Manabu Totsuka ◽  
Shigeyuki Nakaji ◽  
Mutsuo Yamada ◽  
Satoru Kudoh ◽  
...  

We analyzed adaptation mechanisms regulating systemic inflammatory response of the stressed body by using an experimental challenge of repeated exercise bouts and accompanying muscle inflammation. Eight untrained men bicycled at 90 W for 90 min, 3 days in a row. Exercise induced peripheral neutrophilia with a leftward shift of neutrophil nucleus and neutrophil priming for oxidative activity determined by luminol-dependent chemiluminescence. Plasma growth hormone and interleukin-6 rose significantly after exercise and were closely correlated with the neutrophil responses. Serum creatine kinase and myoglobin levels as muscle damage markers rose after exercise in “delayed onset” and were closely correlated with the preceding neutrophil responses. These exercise-induced responses were strongest on day 1, but the magnitude gradually decreased with progressive daily exercise. In contrast, the magnitude of catecholamine responses to exercise sessions gradually rose, possibly suppressing neutrophil oxidative responses. These results indicate that stress-induced systemic release of bioactive substances may determine neutrophil mobilization and functional status, which then may affect local tissue damage of susceptible organs.


Sign in / Sign up

Export Citation Format

Share Document