scholarly journals Shock, diaschisis and von Monakow

2013 ◽  
Vol 71 (7) ◽  
pp. 487-489 ◽  
Author(s):  
Eliasz Engelhardt ◽  
Marleide da Mota Gomes

The concept of shock apparently emerged in the middle of the 18th century (Whyett) as an occurrence observed experimentally after spinal cord transection, and identified as "shock" phenomenon one century later (Hall). The concept was extended (Brown-Séquard) and it was suggested that brain lesions caused functional rupture in regions distant from the injured one ("action à distance"). The term "diaschisis" (von Monakow), proposed as a new modality of shock, had its concept broadened, underpinned by observations of patients, aiming at distinguishing between symptoms of focal brain lesions and transitory effects they produced, attributable to depression of distant parts of the brain connected to the injured area. Presently, diaschisis is related mainly to cerebrovascular lesions and classified according to the connection fibers involved, as proposed by von Monakow. Depression of metabolism and blood flow in regions anatomically separated, but related by connections with the lesion, allows observing diaschisis with neuroimaging.

1989 ◽  
Vol 257 (3) ◽  
pp. H785-H790
Author(s):  
T. Sakamoto ◽  
W. W. Monafo

[14C]butanol tissue uptake was used to measure simultaneously regional blood flow in three regions of the brain (cerebral and cerebellar hemispheres and brain stem) and in five levels of the spinal cord in 10 normothermic rats (group A) and in 10 rats in which rectal temperature had been lowered to 27.7 +/- 0.3 degrees C by applying ice to the torso (group B). Pentobarbital sodium anesthesia was used. Mean arterial blood pressure varied minimally between groups as did arterial pH, PO2, and PCO2. In group A, regional spinal cord blood flow (rSCBF) varied from 49.7 +/- 1.6 to 62.6 +/- 2.1 ml.min-1.100 g-1; in brain, regional blood flow (rBBF) averaged 74.4 +/- 2.3 ml.min-1.100 g-1 in the whole brain and was highest in the brain stem. rSCBF in group B was elevated in all levels of the cord by 21-34% (P less than 0.05). rBBF, however, was lowered by 21% in the cerebral hemispheres (P less than 0.001) and by 14% in the brain as a whole (P less than 0.05). The changes in calculated vascular resistance tended to be inversely related to blood flow in all tissues. We conclude that rBBF is depressed in acutely hypothermic pentobarbital sodium-anesthetized rats, as has been noted before, but that rSCBF rises under these experimental conditions. The elevation of rSCBF in hypothermic rats confirms our previous observations.


Physiology ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 216-229 ◽  
Author(s):  
Joline E. Brandenburg ◽  
Matthew J. Fogarty ◽  
Gary C. Sieck

Spastic cerebral palsy (CP), despite the name, is not consistently identifiable by specific brain lesions. CP animal models focus on risk factors for development of CP, yet few reproduce the diagnostic symptoms. Animal models of CP must advance beyond risk factors to etiologies, including both the brain and spinal cord.


1990 ◽  
Vol 259 (6) ◽  
pp. H1649-H1654
Author(s):  
T. Sakamoto ◽  
A. Iwai ◽  
W. W. Monafo

Regional blood flow (RBF) increases in the spinal cord and sciatic nerve of acutely hypothermic rats. To determine whether cord transection affects this response, we measured RBF in rat spinal cord and sciatic nerve 2 h after cord transection at vertebrae T8 (n = 18 rats) and T11 (n = 18 rats) using [14C]butanol distribution. Nine in each group were normothermic controls. In T11 transection-hypothermia (25-27 degrees C rectal temperature), RBF increased in the three rostral cord segments by 28-40% (P less than 0.05); caudally, cord RBF was depressed in two segments (P less than 0.05), unchanged in the other; RBF fell in nerve (P less than 0.05). In T8 transection-hypothermia, RBF was unchanged in the two rostral cord segments; caudally, RBF was depressed in one cord segment (P less than 0.05) and unchanged in the others; RBF was unchanged in nerve. We conclude that RBF does not rise in caudal spinal cord segments or in sciatic nerve during hypothermia in rats with prior spinal cord transection.


1963 ◽  
Vol 204 (2) ◽  
pp. 327-329 ◽  
Author(s):  
Morris J. Mandel ◽  
Francesco Arcidiacono ◽  
Leo A. Sapirstein

Rb86 and Iodo131 antipyrine were injected together by vein in rats. The brain, spinal cord, and nerve contents of each label were measured 30 or 60 sec later. Iodoantipyrine values were used to calculate blood flow to these portions of the nervous system. The ratio of Rb86 to iodoantipyrine uptake was used as an index of the efficacy of the hematoneural barrier. The barrier is most complete in the brain, less complete in the spinal cord, and absent in peripheral nerve. Blood flow values per gram are: brain .41 ml/g min; cord .28 ml/g min, and nerve .11 ml/g min. It is suggested that the blood-brain barrier is an anatomical entity rather than a functional one.


2006 ◽  
Vol 96 (5) ◽  
pp. 2274-2281 ◽  
Author(s):  
Céline Jean-Xavier ◽  
Jean-François Pflieger ◽  
Sylvie Liabeuf ◽  
Laurent Vinay

GABA and glycine are excitatory in the immature spinal cord and become inhibitory during development. The shift from depolarizing to hyperpolarizing inhibitory postsynaptic potentials (IPSPs) occurs during the perinatal period in the rat, a time window during which the projections from the brain stem reach the lumbar enlargement. In this study, we investigated the effects of suppressing influences of the brain on lumbar motoneurons during this critical period for the negative shift of the reversal potential of IPSPs ( EIPSP). The spinal cord was transected at the thoracic level on the day of birth [postnatal day 0 (P0)]. EIPSP, at P4–P7, was significantly more depolarized in cord-transected than in cord-intact animals ( EIPSP above and below resting potential, respectively). EIPSP at P4–P7 in cord-transected animals was close to EIPSP at P0–P2. K-Cl cotransporter KCC2 immunohistochemistry revealed a developmental increase of staining in the area of lumbar motoneurons between P0 and P7 in cord-intact animals; this increase was not observed after spinal cord transection. The motoneurons recorded from cord-transected animals were less sensitive to the experimental manipulations aimed at testing the functionality of the KCC2 system, which is sensitive to [K+]o and blocked by bumetanide. Although bumetanide significantly depolarized EIPSP, the shift was less pronounced than in cord-intact animals. In addition, a reduction of [K+]o affected EIPSP significantly only in cord-intact animals. Therefore influences from the brain stem may play an essential role in the maturation of inhibitory synaptic transmission, possibly by upregulating KCC2 and its functionality.


2020 ◽  
pp. 6100-6109
Author(s):  
Hadi Manji

Invasion of the central nervous system occurs early in the course of syphilis infection. Neurosyphilis causes a meningitis, a myeloradiculopathy due to pachymeningitis, gummatous (granulomatous) cord and brain lesions; endarteritis may cause infarction and a low-grade meningoencephalitis affecting the brain results in dementia (general paralysis of the insane) and in the spinal cord, a sensory ataxic syndrome (tabes dorsalis). The introduction of highly active antiretroviral therapies has greatly reduced the frequency of these complications in patients with access to these treatments. However, newer complications are now increasingly recognized such as neurological immune reconstitution inflammatory syndrome, a compartmentalization syndrome (cerebrospinal fluid escape). This chapter looks at these and other important issues regarding the background, diagnosis, treatment, and outlook for neurosyphilis and neuro-AIDS.


1993 ◽  
Vol 51 (3) ◽  
pp. 329-332 ◽  
Author(s):  
Aílton Melo ◽  
Luciana Moura ◽  
Solana Rios ◽  
Marcos Machado ◽  
Gersonita Costa

Magnetic resonance imaging of the brain and spinal cord were carried out for seventeen consecutive patients with HTLV-1 associated myelopathy (HAM). Eight patients had brain abnormalities and four had decreased thoracic spinal cord diameter. Brain lesions were mostly located in subcortical and periventricular areas. Our data suggest that diffuse central nervous system lesions are present in patients with HAM.


1980 ◽  
Vol 47 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Masahiro Yamamoto ◽  
John S. Meyer ◽  
Fumihiko Sakai ◽  
Ruth Jakoby

Sign in / Sign up

Export Citation Format

Share Document