scholarly journals Water potential in peach branches as a function of soil water storage and evaporative demand of the atmosphere

2018 ◽  
Vol 40 (1) ◽  
Author(s):  
Alex Becker Monteiro ◽  
Carlos Reisser Júnior ◽  
Luciano Recart Romano ◽  
Luís Carlos Timm ◽  
Marcos Toebe

Abstract The use of water potential indicators in the plant has been adopted in irrigation management, in recent years, since it is accepted that the plant is the best indicator of its own water status. The objective of this study was to verify the relationship between water potential in peach tree branches and the evaporative demand of the atmosphere and the water availability in two textural classes of an Aquertic Hapludalf soil, aiming to adopt irrigation management strategies based on the water potential in the plant. Research was carried out in a commercial peach orchard, cv. Esmeralda, in the municipality of Morro Redondo-Rio Grande do Sul state, Brazil. Four peach tree rows were evaluated, being two irrigated and two non irrigated. The irrigation management was based on the replacement of the potential crop evapotranspiration. It was concluded that the water potential in the peach tree branch is positively related with the evaporative demand of the atmosphere and negatively related with soil water storage. Future studies should adopt irrigation management strategies for peach trees based on the water potential mainly for the irrigation management of post-harvest peach trees.

1981 ◽  
Vol 29 (3) ◽  
pp. 311 ◽  
Author(s):  
BR Tunstall ◽  
DJ Connor

Water input, soil water storage and plant water status were measured at monthly intervals over 2� years In a mature brigalow (Acacla harpophylla) forest. Redistribution of rainfall by the canopy was slight and stem flow averaged only 1.8%, but the direct loss of intercepted water accounted for 15% of the Annual ramfall In the wettest condltlon the soil stored 890 mm of water to a depth of 3 m The minimum sod water store measured under severe drought conditions was 840 mm when the dawn values of plant water potential were -6.8 MPa The soil water potentials below 1 m were consistently around -3.5 MPa due largely to high salt concentrations The tendency in a drying soil was towards a uniform profile of soil water potentlal, and soil water at depths below 1 m was extracted only when dawn plant water potentials were less than - 3.5 MPa Over monthly Intervals the maximum and minimum rates of evapotransplratlon were 3.3 and 0 .46 mm/d respectively, and the pattern of community water use was related to rainfall and not to potentlal evaporation. To survive in such an environment the plants develop and withstand extremely low water potentials associated wlth the low availability of water and the high evaporative demand.


1979 ◽  
Vol 19 (97) ◽  
pp. 233 ◽  
Author(s):  
WK Anderson

The potential, or energy-limited evapotranspiration, and the actual, or soil water-limited evapotranspiration functions of sunflower were estimated by lysimetry and field soil water measurements. The functions show that peak water demand by the crop is in the immediate post-anthesis period and that sunflower is capable of restricting its water use when some 70% of the maximum available water remains in the root zone. With the aid of these functions, weekly estimates were made of the water use of thirteen commercial sunflower crops in northern New South Wales. Estimated water use ranged from 150 to 320 mrn and water use efficiencies from 1.9 to 10.5 kg seed mm-1 water used. Highest yields and water use efficiencies were associated with a combination of high total water supply (soil water at sowing plus rainfall during growth of 380 mm or more) high water use (220 mm or more) and low evaporative demand (below 780 mm of pan evaporation). Based on the water use characteristics of the crop the optimal sowing time in most areas is mid summer. However, spring sowings may be preferable for winter rainfall areas where soil water storage capacity is high and there is only a small component of summer rain. Crops sown in spring, even with high stored soil water (up to 200 mm) failed to yield as well as those sown in summer with much lower soil water storage.


1999 ◽  
Vol 124 (4) ◽  
pp. 437-444 ◽  
Author(s):  
David A. Goldhamer ◽  
Elias Fereres ◽  
Merce Mata ◽  
Joan Girona ◽  
Moshe Cohen

To characterize tree responses to water deficits in shallow and deep rooted conditions, parameters developed using daily oscillations from continuously measured soil water content and trunk diameter were compared with traditional discrete monitoring of soil and plant water status in lysimeter and field-grown peach trees [Prunus persica (L.) Batsch `O'Henry']. Evaluation occurred during the imposition of deficit irrigation for 21 days followed by full irrigation for 17 days. The maximum daily available soil water content fluctuations (MXAWCF) taken at any of the four monitored root zone depths responded most rapidly to the deficit irrigation. The depth of the MXAWCF increased with time during the deficit irrigation. Differences relative to a fully irrigated control were greater in the lysimeter than the field-grown trees. Minimum daily trunk diameter (MNTD) and maximum daily trunk shrinkage (MDS) responded sooner than midday stem water potential (stem Ψ), predawn or midday leaf water potential (predawn leaf Ψ and leaf Ψ), or photosynthesis (A). Parameters based on trunk diameter monitoring, including maximum daily trunk diameter (MXTD), correlated well with established physiological parameters of tree water status. Statistical analysis of the differences in the measured parameters relative to fully irrigated trees during the first 10 days of deficit irrigation ranked the sensitivity of the parameters in the lysimeter as MXAWCF > MNTD > MDS > MXTD > stem Ψ = A = predawn leaf Ψ = leaf Ψ. Equivalent analysis with the field-grown trees ranked the sensitivity of the parameters as MXAWCF > MNTD > MDS > stem Ψ = leaf Ψ = MXTD = predawn leaf Ψ > A. Following a return to full irrigation in the lysimeter, MDS and all the discrete measurements except A quickly returned to predeficit irrigation levels. Tree recovery in the field-grown trees was slower and incomplete due to inadequate filling of the root zone. Fruit size was significantly reduced in the lysimeter while being minimally affected in the field-grown trees. Parameters only available from continuous monitoring hold promise for improving the precision of irrigation decision-making over the use of discrete measurements.


1998 ◽  
Vol 16 (4) ◽  
pp. 470-476 ◽  
Author(s):  
A. Sellin

Abstract. Where there is sufficient water storage in the soil the water potential (Ψx) in shoots of Norway spruce [Picea abies (L.) Karst.] is strongly governed by the vapour pressure deficit of the atmosphere, while the mean minimum values of Ψx usually do not drop below –1.5 MPa under meteorological conditions in Estonia. If the base water potential (Ψb) is above –0.62 MPa, the principal factor causing water deficiency in shoots of P. abies may be either limited soil water reserves or atmospheric evaporative demand depending on the current level of the vapour pressure deficit. As the soil dries the stomatal control becomes more efficient in preventing water losses from the foliage, and the leaf water status, in turn, less sensitive to atmospheric demand. Under drought conditions, if Ψb falls below –0.62 MPa, the trees' water stress is mainly caused by low soil water availability. Further declines in the shoot water potential (below –1.5 MPa) can be attributed primarily to further decreases in the soil water, i.e. to the static water stress.Key words. Hydrology (evapotranspiration · plant ecology · soil moisture).


2016 ◽  
Vol 8 (7) ◽  
pp. 30
Author(s):  
A. P. Schwantes ◽  
Klaus Reichardt ◽  
Durval Dourado Neto ◽  
Angélica Durigon ◽  
Victor Meriguetti Pinto

<p>The estimation of soil water status in cropped areas continues to be challenging for soil and climate scientists. This study contributes to this issue estimating soil water storage by the water balance of Thornthwaite and Mather, Rijtema and Aboukhaled, and Dourado and de Jong van Lier, combined with crop potential evapotranspiration estimated by Penman-Monteith, to compare them with soil water storage values calculated from polymer tensiometer data of a soybean crop field experiment. The experiment was conducted in Piracicaba, SP, with tensiometers installed at 0.05, 0.15 and 0.3 m depths. Results show that the tensiometers presented good performance to measure soil water pressure head in the whole range of the available water capacity for the crop. The tensiometer presents the advantage of allowing measurements of soil water storage in layers, in contraposition to climatologic water balance calculations which assume one single layer. Rijtema and Aboukhaled presented the best correlation with the water storage estimated from tensiometer data.</p>


Author(s):  
Kleiton Rocha Saraiva ◽  
Francisco Marcus Lima Bezerra ◽  
Francisco de Souza ◽  
Luis de França Camboim Neto ◽  
Clayton Moura de Carvalho ◽  
...  

The research aimed to validate the ISAREG model, introducing it to water management studies in irrigation in the State of Ceará, comparing results of experimental research, with results of simulations, carried out with the use of software, analyzing the following variables: crop evapotranspiration, variation of soil water storage and water flow in the soil. A bibliographic survey was carried out to obtain soil, climate and crop information required by the model to perform the soil water balance. Aiming at the validation of ISAREG, the model was fed with the following data: reference evapotranspiration, precipitation, phenological phases of the crop, effective depth of the root system, water availability factor in the soil, crop coefficient and soil information. Subsequently, the irrigation management option "dates and irrigation depths" was selected, and ISAREG performed the simulation of the soil water balance. The ISAREG demonstrated a detailed soil water balance, being validated in this study, because when its results were compared to the experimental ones, there was similarity in the trends of the variables analyzed, despite the reduced correlation verified regarding the variation of water storage in the soil.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Sign in / Sign up

Export Citation Format

Share Document