scholarly journals Can ozone or violet light improve the color change or physicochemical properties of hydrogen peroxide-bleached tooth?

2021 ◽  
Vol 32 (4) ◽  
pp. 19-30
Author(s):  
Nayara Rodrigues Nascimento Oliveira Tavares ◽  
Alexia da Mata Galvão ◽  
Lia Dietrich ◽  
Roberta Furtado Carvalho ◽  
Robinson Sabino Silva ◽  
...  

Abstract: This study investigated the bleaching effectiveness and the physicochemical effects on enamel of violet light and ozone, associate or not to hydrogen peroxide, compared to 35%-hydrogen peroxide. Enamel-dentin blocks from human molars were randomly allocated to receive one of the following bleaching protocols (n=15): (HP) 35%-hydrogen peroxide, (VL) violet light, (OZ) ozone, the association between hydrogen peroxide with ozone (OZ+HP) or violet light (VL+HP). All protocols were performed in two sessions with a 48h interval. Color (spectrophotometer) and mineral composition (Raman spectroscopy) were measured before and after the bleaching. Color changes were calculated by ΔEab, ΔE00, and whitening index (WI). The surface roughness was measured with an atomic force microscope. Data were analyzed by One-way or Two-way repeated measure ANOVA followed by the Tukey’s test (α = 0.05). The lowest color change values (either measured by WI, ΔEab, or ΔE00) were observed for VL and OZ used with no HP. Violet light associate with HP was unable to improve the color changes observed for the peroxide alone, in combination with OZ and HP, the highest color changes were verified. Regardless of bleaching protocol, the bleached enamel presented higher contents of PO4 and CO3 -2 than those observed at baseline. All bleaching protocols resulted in similar enamel surface roughness. Both the VL and the OZ caused reduced effects on the enamel color change when used alone. The ozone therapy improved the bleaching effect in the group that received the association of HP.

2017 ◽  
Vol 28 (5) ◽  
pp. 612-617 ◽  
Author(s):  
Camila Evelyn Perete-de-Freitas ◽  
Paula Damasceno Silva ◽  
André Luis Faria-e-Silva

Abstract The aim of the present study was to evaluate the effect of prior microabrasion on the teeth color change and tooth bleaching effectiveness. Eight sound molars were mesio-distally sectioned and the halves were randomly allocated to receive enamel microabrasion or non-abrasion (control) in one of surfaces (buccal or lingual), while the remaining surface received the other treatment. The tooth color on baseline was evaluated by spectrophotometer (CieL*a*b system). After the microabrasion procedure, the tooth color was measured again. Following, the specimens were bleached with 35% hydrogen peroxide for two sessions with one-week interval. The color was re-evaluated 7 days after each section and 30 days after the second session. The effect of enamel microabrasion on color changes was evaluated by paired T-test. Deltas L*, a*, b*, and E were calculated and data submitted to 2-way repeated measure ANOVA followed by Tukey`s test. Paired T-test was also used to assess possible differences on the ultimate color achieved after tooth bleaching. Enamel microabrasion reduced the lightness and increased the redness of specimens. Specimens that received microabrasion presented higher values of ∆L* than control after each bleaching procedure; and higher ∆a* after the 2nd bleaching session. However, the prior enamel microabrasion did not affect the ultimate values of color parameters. Despite enamel microabrasion have modified the tooth color, this procedure did not affect the ultimate results achieved with tooth bleaching using a high-concentrated hydrogen peroxide.


2010 ◽  
Vol 04 (02) ◽  
pp. 118-127 ◽  
Author(s):  
Randa Hafez ◽  
Doa Ahmed ◽  
Mai Yousry ◽  
Wafa El-Badrawy ◽  
Omar El-Mowafy

Objectives: The purpose of this study was to determine color changes and surface roughness of composites when they were subjected to in-office bleaching.Methods: 12 discs 15 mm in diameter and 2 mm thick were prepared from two shades (A2 & A4) of two composites, Durafil VS (DF) and TPH3 (TPH). Specimens were polished and stored in distilled water for 24 hours at 37°C before being subjected to bleaching, staining, and re-bleaching. Each of the groups of specimens (DF-A2, DF-A4, TPH-A2 and TPH-A4) were subdivided into three subgroups (n=4) and bleached with Beyond, LumaWhite-Plus, and Opalescence-Boost. Specimens were then stained by immersing them in a coffee solution for 48 hours at 37°C, and then they were re-bleached. Colorimetric measurements were performed at baseline, after bleaching, after staining, and after rebleaching. Surface roughness was determined with environmental SEM before and after bleaching. Data were statistically-analyzed.Results: None of the bleaching systems notably changed the color of composites (delta-E<2). Coffee staining affected DF specimens more than TPH. Stained specimens showed variable responses to whitening with no significant color change observed with TPH (delta-E<2) and significant changes observed with DF. Surface roughness significantly changed with bleaching, but the degree varied according to composite shade and bleaching agent.Conclusions: Three in-office bleaching agents had no significant color changes on two composites. DF showed more color change than TPH when immersed in coffee. Stained composites showed different degrees of whitening, with DF showing more response. Bleaching may adversely affect the surface texture of composites. Dentists should take into consideration that composite restorations may not respond to bleaching in the same way that natural teeth do. (Eur J Dent 2010;4:118-127)


2019 ◽  
Vol 13 (04) ◽  
pp. 589-598
Author(s):  
Farhana Omar ◽  
Zuryati Ab-Ghani ◽  
Normastura Abd Rahman ◽  
Mohamad Syahrizal Halim

Abstract Objectives This study evaluates the efficacy and safety of the professionally prescribed and nonprescription over-the-counter (OTC) bleaching agents. Materials and Methods Extracted human upper central incisors were prepared and stained with red wine for 14 days before being subjected to four different bleaching agents: professionally prescribed opalescence PF 15%, VOCO Perfect Bleach 10%, nonprescription OTC Crest 3D Whitestrips, and Whitelight Teeth Whitening System. Colorimetric measurement was performed with Vita Easyshade Handheld Spectrophotometer, enamel surface microhardness measured using Vickers Hardness machine, and surface roughness was evaluated with profilometer, before and after bleaching. Scanning electron microscope (SEM) evaluation and atomic force microscopy were conducted postbleaching. Statistical Analysis The data were analyzed with t-test, two-way ANOVA, one-way ANOVA, and Turkey’s test at a significance level of 5%. Results All bleaching products have the same efficacy to whiten stained enamel. Opalescence PF 15% showed significant increase in the microhardness (92.69 ± 68.316). All groups demonstrated significant increase in surface roughness (p < 0.05). SEM evaluation showed that Opalescence PF 15% resulted in same microscopic appearance as unbleached enamel, while VOCO Perfect Bleach 10%, Whitelight Teeth Whitening System and Crest 3D Whitestrips demonstrated mild to moderate irregularities and accentuated irregularities, respectively. Conclusion Professionally prescribed bleaching agent of Opalescence PF 15% is effective tin whitening the teeth, while the other bleaching products may be effective but also have deleterious effects on the enamel.


2019 ◽  
Vol 13 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Akihisa Kubota ◽  

To remove the microroughness and subsurface damage on the SiC and GaN surface efficiently, a surface finishing technique using a magnetic tool holding iron particles in a hydrogen peroxide solution is developed. This technique utilizes OH radicals generated from the iron catalytic particles in a hydrogen peroxide solution, and can be used to preferentially remove the topmost convex part on the surface, resulting in an atomically smooth surface. We employed this polishing technique to finish the surfaces of 2-inch SiC and 2-inch GaN wafers. The surface roughness before and after finishing was measured by scanning white light interferometric microscopy and atomic force microscopy. In addition, the material removal rate was calculated by weight loss due to the finishing process. The results show that the surface roughness on the SiC and GaN wafers is markedly improved. Moreover, the surface waviness and flatness of these wafers before and after finishing did not deteriorate. Atomic force microscope images indicate that an atomically flat SiC surface with a roughness value below 0.1 nm RMS and a GaN surface with atomic step and terrace structures were achieved. Our proposed finishing technique is effective in improving the surface microroughness of SiC and GaN wafers.


2020 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Filipa Freitas ◽  
Teresa Pinheiro de Melo ◽  
António HS Delgado ◽  
Paulo Monteiro ◽  
João Rua ◽  
...  

Surface properties of composites such as roughness and color impact periodontal health and aesthetic outcomes. Novel bulk-fill composites with improved functionality are being introduced and, in light of the existing variety of finishing/polishing procedures, research of their surface properties is warranted. Sixty discs were prepared from bulk-fill composites (Filtek™ Bulk Fill Posterior Restorative and Fill-Up™) and incremental-fill Filtek™ Z250. They were further divided according to different polishing procedures (n = 5): three multi-step polishing procedures or finishing with a bur (control). Surface roughness (Ra) was measured using an atomic force microscope (The AFM Workshop TT-AFM). A spectrophotometer (Spectroshade Micro Optic) was used to determine color stability, after exposure to a coffee solution. Data were analyzed using two-way MANOVA (significance level of 5%). Resin composite type, polishing procedure, and their interaction had a statistically significant effect on surface roughness (p < 0.001) and color change (p < 0.001). Fill-Up™ exhibited the highest surface roughness and greatest color change. Differences in color change were statistically significant (p < 0.001). Filtek™ Bulk Fill registered the lowest surface roughness and color change, after the three-step polishing procedure. Both parameters were significantly correlated (ρ = 0.754, p < 0.001) and found to be material dependent and polishing-procedure dependent. Higher surface roughness relates to greater color changes.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2012 ◽  
Vol 37 (5) ◽  
pp. 526-531 ◽  
Author(s):  
CRG Torres ◽  
CF Ribeiro ◽  
E Bresciani ◽  
AB Borges

SUMMARY The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (p&lt;0.05). Color changes were significant for different tested bleaching therapies (p&lt;0.0001), with the greatest color change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (p&lt;0.0001) and bleaching therapy (p=0.0016) used. No significant differences in fluorescence between different bleaching gel concentrations were detected by Tukey test. The greatest fluorescence alteration was detected on the brand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration.


2017 ◽  
Vol 18 (4) ◽  
pp. 283-288 ◽  
Author(s):  
Cleidiel AA Lemos ◽  
Silvio J Mauro ◽  
Paulo H dos Santos ◽  
André LF Briso ◽  
Ticiane C Fagundes

ABSTRACT Aim The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Materials and methods Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal – Wallis and Dunn's test (p < 0.05). Color change (ΔE) was analyzed by one-way analysis of variance and Tukey's tests (p < 0.05). The initial and final data were compared using the Wilcoxon test (p < 0.05). Spearman test checked the correlation between the roughness and gloss (p < 0.05). Results Regarding surface roughness and gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Conclusion Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. Clinical significance The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored. How to cite this article Lemos CAA, Mauro SJ, dos Santos PH, Briso ALF, Fagundes TC. Influence of Mechanical and Chemical Degradation in the Surface Roughness, Gloss, and Color of Microhybrid Composites. J Contemp Dent Pract 2017;18(4):283-288.


2011 ◽  
Vol 20 (3-4) ◽  
pp. 113-130 ◽  
Author(s):  
Colin Utz-Meagher ◽  
John Nulty ◽  
Lisa Holt

Comparative Analysis of Barefoot and Shod Running This study investigated the biomechanical difference between running barefoot and shod before and after a barefoot training program (BTP). Foot angles at contact (FA), contact time (CT), stride length (SL), initial contact force (ICF), and total peak force (TPF) in shod and unshod runners was analyzed. Fourteen collegiate runners attended 12 total sessions over a two week period. Subjects performed a baseline trial, running eight (10-20 meter) repetitions, four barefoot and four shod, at three different stations; running over a force plate, running in front of a SONY DCR-HC52 video camera (30fps) and running in front of a Casio Exilim Pro EX-F1 camera (300fps). A Post-Test (PT) was conducted at the end of the BTP. A repeated measure ANOVA showed significance (p<.05) in the Test factor, BTP; lowering participants FA mean from 18.8deg+/-.9deg to 5.6deg+/-15.1deg, CT mean from .221m+/-.02m to .2m+/-.03m, and TPF mean from 1427.4N+/-312.9N to 1348.2N+/-269.4N. A repeated measure ANOVA showed significance (p<.05) in the Condition factor (shod vs. unshod); lowering participants FA mean from 23.1deg+/-12.6deg to 1.3deg+/-14.4deg, SL mean from .9m+/-.1m to .8m+/-.1m, and ICF mean from 1465.3N+/- 369.6N to 1324.7N+/-379.4N. Running barefoot and following a BTP alters running biomechanics in ways that may decrease running related injuries.


2010 ◽  
Vol 25 (4) ◽  
pp. 708-710 ◽  
Author(s):  
Atsushi Ogura ◽  
Daisuke Kosemura ◽  
Shingo Kinoshita

4H-silicon carbide (SiC) wafers were annealed at 1300 and 1600 °C for 30 min and 60 min in a conventional and purified Ar atmosphere. The surface roughness before and after annealing was evaluated by atomic force microscopy. The surface roughness before annealing was approximately 2.37 nm in root mean square. The roughness, after annealing for 30 min at 1300 and 1600 °C in a conventional Ar furnace, was increased to 4.53 and 14.9 nm, respectively. The roughness, after annealing for 60 min, was 5.01 and 19.1 nm, respectively. In this study, the G3 grade Ar gas (99.999%) was supplied in the conventional furnace tube. When the Ar gas was purified to an impurity concentration of less than 1 ppb, and it was supplied in the leak-tight furnace tube, the roughness after 30-min annealing improved 4.27 and 6.93 nm at 1300 and 1600 °C, respectively. The roughness after 60-min annealing was also reduced to 3.54 and 9.28 nm, respectively. We assume that a significant reduction of H2O concentration in the annealing atmosphere might play an important role in suppressing surface roughening of SiC during high-temperature annealing.


Sign in / Sign up

Export Citation Format

Share Document