scholarly journals Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.)

Author(s):  
T. Ahmadu ◽  
K. Ahmad ◽  
S. I. Ismail ◽  
O. Rashed ◽  
N. Asib ◽  
...  

Abstract Drawbacks associated with the use of chemical fungicides to control plant pathogenic fungi such as Botrytis cinerea stimulate the need for alternatives. Therefore, the present study was carried out to determine the antifungal potentials of Moringa oleifera extracts against B. cinerea. Phytochemical analysis using qualitative chemical tests revealed the presence of huge amount of crucial phytochemicals compounds like phenolic compounds, alkaloids and saponins in the M. oleifera leaf extract. Antifungal bioassay of the crude extracts indicated better mycelial growth inhibition by methanol leaf extract (99%). The minimum inhibitory concentration (MIC) was 5 mg/ml with 100% spore germination inhibition and minimum fungicidal concentration (MFC) was 10 mg/ml with 98.10% mycelial growth inhibition using broth micro dilution and poisoned food techniques. Gas chromatography–mass spectrometry (GC-MS) analysis led to the identification of 67 volatile chemical compounds in the leaf extract with 6-decenoic acid (Z)- (19.87%) was the predominant compound. Further chemical elucidation of the crude extracts performed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) showed the presence of non-volatile chemical compounds, mostly flavones, flavonoids and phenolic acids (i.e. quercetin and kaempferol). Scanning electron microscopy and transmission electron microscopy analysis showed positive effect of M. oleifera leaf extract on the treated conidia and mycelium of B. cinerea. Findings revealed that irreversible surface and ultra-structural changes with severe detrimental effects on conidia and mycelium morphology compared to control treatment. Overall findings suggested that M. oleifera leaf extract is a promising candidate for biological control of fungal pathogens, thus limiting overdependence on chemical fungicides.

2021 ◽  
Author(s):  
Md Kamaruzzaman ◽  
Md. Samiul Islam ◽  
Shakil Ahmed Polash ◽  
Razia Sultana

Abstract The species of Trichoderma are one of the most frequently used natural biocontrol agents to mitigate plant diseases and improve crop yields. In this study, sixteen Trichoderma spp. were isolated from soil of different regions of China. However, we identified Trichoderma. asperellum HbGT6-07 by initial fungal growth inhibition assay and molecular approach and also evaluated the antimicrobial effects. Tested 10% concentrated culture filtrate of T. asperellum HbGT6-07 inhibited 93 % of colony radial growth in Botrytis cinerea (B05.10) as well as 91 % of Sclerotinia sclerotiorum (A367). VOCs emitted from HbGT6-07 have antimicrobial properties against Botrytis cinerea (B05.10) and Sclerotinia sclerotiorum (A367). In in-vitro DwD method, The T. asperellum HbGT6-07 volatile organic compounds (VOCs) effectively reduced colonial diameter, mycelial growth rate and sclerotia production by two virulent fungal pathogens. The GC-MS analysis identified thirty-two VOCs derived from HbGT6-07 isolates. Moreover, the hyphal fragments of the T. asperellum HbGT6-07 demonstrated successful mycelia growth suppression of two virulent fungal agents by competing toward the invasion on oilseed rape leaves. The above findings indicated that T. asperellum HbGT6-07 could attain competitive progress via volatile antifungal compound production and comprehensive mycelial growth. This study provided an outlook of using T. asperellum HbGT6-07 to control virulent pathogens of B. cinerea and S. sclerotiorum.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2080
Author(s):  
Sangeeta Chandrashekar ◽  
Raman Vijayakumar ◽  
Ramachandran Chelliah ◽  
Eric Banan-Mwine Daliri ◽  
Inamul Hasan Madar ◽  
...  

The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.


Author(s):  
Yara Suhan Juárez-Campusano ◽  
María del Socorro Chávaro-Ortiz ◽  
Lourdes Soto-Muñoz / ◽  
Juan Ramiro Pacheco-Aguilar

Botrytis cinerea causes postharvest fruit rot of an infinity of crops, the infective capacity is due to its physiological diversity that shown, even inside the same crop. For its control, the use of antagonistic microoganisms is emerging as a sustainable option. In the present work, 40 Botrytis isolates from three vineyards were characterized by their ability to infect grape fruit (Thomson Seedless), the results showed that all produced lesions diameters from 6.5 to 22.2 mm. Ten of these isolates that presented differences in terms of their virulence, were subject to in vitro antagonism test, using the yeasts Metschnikowia sp. NB9 and FLL17 (Kodamaea sp. FLL17 and the bacteria FR4B12 Bacillus sp. R4B12 from must and flower and fruit, respectively. The results showed that, on average, FRB412 had the highest inhibitory activity on the growth of Botrytis strains, exhibiting mycelial growth inhibition percentages from 51 to 81 %, followed by FLL17 (21 to 53 %) and NB9 (15 to 51 %). In conclusion, the three study strains have different ranges of biocontrol on Botrytis, whose application could reduce gray rot in grapes.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2020 ◽  
Author(s):  
Suman Duhan ◽  
Kedar Sahoo ◽  
Sudhir Kumar Singh ◽  
Manoj Kumar

The development of a sensitive alpha-NaYF4:Yb3+, Er3+ solid-phase upconverting platform (UCP) has been realized using Moringa oleifera leaf extract for selective detection of arsenic (As III) contamination in drinking water. The presence of polyphenols in the leaves extract is shown to induce luminescence resonance transfer (LRET), diminishing thereby the Er3+ upconverting red and green emissions activated by 980 nm excitation. However, addition of As3+ species interrupts the LRET process and restores emission proportionately. This feature allows platform to selectively detect arsenic pollution in water below the safe limit of 10 ppt. The uniqueness of UCP lies in monitoring the As3+ contamination in samples containing heavy ions (Cd2+, Hg2+) as well, without apparent effect on the signal reproducibility. UCP is also found to be insensitive to other interfering ions like Pb2+, H2PO4-, F-, Cl-, Ca2+, Mg2+, Sn2+, Cr6+, Fe2+ and Co2+, if present.<br><br>


2019 ◽  
Vol 19 (5) ◽  
pp. 677-686 ◽  
Author(s):  
Samrat Paul ◽  
Piyali Basak ◽  
Namrata Maity ◽  
Chayan Guha ◽  
Nandan Kumar Jana

Background: Moringa oleifera lam, commonly known as “Sajina”, is an indigenous species to India. In our folk medicine, it is used for the treatment of Canker (cancer). The Moringa oleifera leaf extract contains many phyto-compounds, with some being anti-neoplastic in nature. Objective: Our preliminary study showed that the leaf extract significantly kills cancer cells compared to normal cells. On searching for the new phyto-compound, Bis-isothiocyanatomethyl) benzene was purified and isolated. Methods: The sequential process of fractional distillation, column chromatography, followed by TLC and HPLC is performed for purification. Every fraction from each step was tested on HeLa cell line for evaluating the presence of the phyto-compound. Results and Conclusion: FTIR peak analysis of a single phyto-compound shows the presence of thiocyanate group, aromatic carbon group. 1H & 13C NMR peak analysis along with High-resolution mass spectroscopy (HRMS) calculation confirm the chemical structure with IUPAC name [Bis (Isothiocyanatomethyl) benzene]. Previously, Isothiocyanatomethyl- benzene solely or in conjugation with sugar molecule has been reported, but its dimeric form in nature hasnot yet been published anywhere. It shows anticancer activity by retarding cancer cell growth & inhibits carcinogenesis on HeLa, MCF-7, and MDA-MB-231 cell lines by caspase 3 apoptotic pathway and showed comparatively less cytotoxicity to PBMC cell. It shows anticancer activity almost the same as the market available drug Cis-Platin. Therefore, further extrapolating its activity with different concentrations may result in its use as a drug formulation for the treatment of cancer.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


2021 ◽  
Vol 22 (13) ◽  
pp. 6805
Author(s):  
Mihaela-Cristina Bunea ◽  
Victor-Constantin Diculescu ◽  
Monica Enculescu ◽  
Horia Iovu ◽  
Teodor Adrian Enache

The electrochemical behavior and the interaction of the immunosuppressive drug azathioprine (AZA) with deoxyribonucleic acid (DNA) were investigated using voltammetric techniques, mass spectrometry (MS), and scanning electron microscopy (SEM). The redox mechanism of AZA on glassy carbon (GC) was investigated using cyclic and differential pulse (DP) voltammetry. It was proven that the electroactive center of AZA is the nitro group and its reduction mechanism is a diffusion-controlled process, which occurs in consecutive steps with formation of electroactive products and involves the transfer of electrons and protons. A redox mechanism was proposed and the interaction of AZA with DNA was also investigated. Morphological characterization of the DNA film on the electrode surface before and after interaction with AZA was performed using scanning electron microscopy. An electrochemical DNA biosensor was employed to study the interactions between AZA and DNA with different concentrations, incubation times, and applied potential values. It was shown that the reduction of AZA molecules bound to the DNA layer induces structural changes of the DNA double strands and oxidative damage, which were recognized through the occurrence of the 8-oxo-deoxyguanosine oxidation peak. Mass spectrometry investigation of the DNA film before and after interaction with AZA also demonstrated the formation of AZA adducts with purine bases.


Sign in / Sign up

Export Citation Format

Share Document