scholarly journals Distribution pattern of arthropods on the leaf surfaces of Acacia auriculiformis saplings

2023 ◽  
Vol 83 ◽  
Author(s):  
L. F. Silva ◽  
F. W. S. Silva ◽  
G. L. Demolin-Leite ◽  
M. A. Soares ◽  
P. G. Lemes ◽  
...  

Abstract Acacia auriculiformis A. Cunn. Ex Benth. (Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs. Our goal was to assess during a 24-month survey the pattern of arthropods (phytophagous insects, bees, spiders, and predator insects) on the leaf surfaces of A. auriculiformis saplings. Fourteen species of phytophagous, two of bees and eleven of predators were most abundant on the adaxial surface. The values of the ecological indexes (abundance, diversity, and species richness) and the rarefaction, and k-dominance curves of phytophagous, bees and arthropod predators were highest on the adaxial leaf surface of A. auriculiformis. The k-dominance and abundance of Aleyrodidae (Hemiptera) (both leaf surfaces), the native stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) (both leaf surfaces) and the ant Brachymyrmex sp. (adaxial surface) and Pheidole sp. (Hymenoptera: Formicidae) (abaxial surface) were the highest between the taxonomic groups of phytophagous, bees, and predators, respectively on A. auriculiformis saplings. The ecological indexes and rarefaction, abundance, and k-dominance curves of phytophagous insects, bees, and predators were highest on the adaxial leaf surface. The preference of phytophagous insects for the adaxial leaf surface is probably due to the lower effort required to move on this surface. Understanding the arthropod preferences between leaf surfaces may help to develop sampling and pest management plans for the most abundant phytophagous insects on A. auriculiformis saplings. Also, knowledge on the preference pattern of bees and predators may be used to favour their conservation.

Weed Science ◽  
1993 ◽  
Vol 41 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Moritz Knoche ◽  
Martin J. Bukovac

The effect of oxyethylene (OE) chain length of three homologous series of nonionic surfactants (allinol, nonoxynol, octoxynol) on glyphosate uptake was markedly affected by the leaf surface fine-structure of sugarbeet and kohlrabi. Adaxial leaf surfaces of sugarbeet were covered with a layer of amorphous wax, whereas the adaxial surface of kohlrabi leaves was covered with fine crystalline wax. Foliar uptake of glyphosate (1 mM glyphosate, 20 mM glycine, pH 3.2) averaged 4% for sugarbeet without surfactant, but droplets were not retained by kohlrabi leaves in the absence of a surfactant. Glyphosate absorption with octoxynol (9 to 10 OE units, 0.5 g L−1) was rapid initially (0 to 2 h) and leveled off about 2 h after application in both species. Absorption by sugarbeet decreased from 12 to 3% as OE content of octoxynol was increased from 5 to 30 OE units. In contrast, surfactants of intermediate OE content (octoxynol, 16 OE units) induced the greatest uptake (17%) on kohlrabi. Leaf wetting was markedly affected by surfactant and leaf surface. As OE content of octoxynol increased from 5 to 30 OE units, droplet/leaf interface areas of 1-μl droplets decreased from 4 to 3 mm2 on the adaxial leaf surface of sugarbeet and from 61 to 2 mm2 on kohlrabi. Concurrently, the rate of droplet evaporation (1 μl) decreased from 1.0 to 0.7 nl s−1 on sugarbeet and 4.2 to 0.5 nl s−1 on kohlrabi leaves. The effect of OE content on enhancement of glyphosate uptake and wetting characteristics of spray solutions was similar within species for different hydrophobic moieties but differed markedly between species.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 216 ◽  
Author(s):  
Shimat V. Joseph

Azaleas (Rhododendron L. spp.) are widely grown ornamental plants in eastern and western regions of the USA. The azalea lace bug, Stephanitis pyrioides (Scott) (Hemiptera: Tingidae), is an important insect pest of azaleas. Adults and nymphs of S. pyrioides consume chlorophyll in azalea foliage, and severely affected plants appear bleached. Neonicotinoid insecticides are effective and widely used for S. pyrioides control; however, nursery growers and landscape professionals are concerned about nontarget effects on beneficial insects and demand neonicotinoid-free plants. There is clearly a need to develop reduced-risk control strategies for S. pyrioides. The insect growth regulator (IGR) novaluron elicits transovarial activity when adult S. pyrioides are exposed to it. However, it is not certain whether transovarial effects can be observed when S. pyrioides adults that colonize the abaxial leaf surface ingest novaluron residues deposited on the adaxial leaf surface. Experiments were conducted to assess transovarial activity upon exposure to various application rates of novaluron alone and novaluron with various adjuvants. The numbers of nymphs were significantly lower when the full rate of novaluron was applied on the adaxial surface of leaves compared to the number of nymphs on non-treated leaves. The densities of nymphs were not significantly different between the half and full rates of novaluron treatment. When novaluron with various adjuvants was applied to the adaxial surface of the leaves, the densities of nymphs were significantly lower under the novaluron treatments compared to the non-treated leaves, regardless of the type of adjuvant added. There was no significant difference between treatment with novaluron alone and the treatments of novaluron with adjuvants. These data show that transovarial activity was elicited in adults of S. pyrioides when novaluron was applied on the adaxial leaf surface.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Debanjan Sanyal ◽  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Laboratory studies were conducted to examine the leaf surface, epicuticular wax content, and spread area of primisulfuron spray droplet with and without surfactant on leaf surface of barnyardgrass and green foxtail. Adaxial and abaxial leaf surfaces were examined using scanning electron microscopy and leaf wax was extracted and quantified. The spread of 1-μl droplets of distilled water, primisulfuron solution (without surfactant), primisulfuron solution with a nonionic low foam wetter/spreader adjuvant (0.25% v/v), and with an organosilicone wetting agent (0.1% v/v) was determined on the adaxial leaf surfaces of each of the weed species. Stomata and trichomes were present on adaxial and abaxial leaf surfaces in both species. Green foxtail had more stomata per unit area on the adaxial as compared to the abaxial leaf surface. Barnyardgrass had more stomata on the abaxial than on the adaxial leaf surface. There was no significant variation in the number of trichomes per unit leaf area of green foxtail, and the number of prickles per unit area of leaf was significantly higher in adaxial than the abaxial leaf surface, in both young and old leaves. In barnyardgrass, there were more trichomes on abaxial than adaxial leaf surface. The mean value of the wax content per unit of leaf area in barnyardgrass and green foxtail was 35.9 μg cm−2and 19.1 μg cm−2, respectively. On both species primisulfuron with a nonionic surfactant had more spread area than that without a surfactant, and the spread was even greater with organosilicone wetting agent. The spread area of primisulfuron droplet was higher on the leaf surface of barnyardgrass than on green foxtail when surfactant was added.


2023 ◽  
Vol 83 ◽  
Author(s):  
G. N. Gomes ◽  
G. L. D. Leite ◽  
M. A. Soares ◽  
R. E. M. Guanãbens ◽  
P. G. Lemes ◽  
...  

Abstract Acacia mangium (Willd., 1806) (Fabales: Fabaceae) is a fast growing, rustic, pioneer species, with potential to fix nitrogen, and for programs to recover degraded areas. The objective was to evaluate the distribution and the functional diversity of interactions and the K-dominance of arthropod groups on A. mangium saplings. The number of individuals of eleven species of phytophagous insects, three bee species, and fourteen natural enemy species were highest on the adaxial leaf surface of this plant. Abundance, diversity and species richness of phytophagous insects and natural enemies, and abundance and species richness of pollinators were highest on the adaxial A. mangium leaf surface. The distribution of five species of sap-sucking hemipterans and six of protocooperating ants (Hymenoptera), with positive interaction between these groups, and three bee species (Hymenoptera) were aggregated on leaves of A. mangium saplings. Aethalion reticulatum (L.) (Hemiptera: Aethalionidae) and Bemisia sp. (Hemiptera: Aleyrodidae); Brachymyrmex sp. and Camponotus sp. (Hymenoptera: Formicidae); and Trigona spinipes Fabricius (Hymenoptera: Apidae) were the most dominant phytophagous insects, natural enemies, and pollinators, respectively, on A. mangium leaves. Knowledge of preferred leaf surfaces could help integrated pest management programs.


2021 ◽  
Author(s):  
Noa Ligot ◽  
Benoît Pereira ◽  
Patrick Bogaert ◽  
Guillaume Lobet ◽  
Pierre Delmelle

<p>Volcanic ashfall negatively affects crops, causing major economic losses and jeopardising the livelihood of farmers in developing countries where agriculture is at volcanic risk. Ash on plant foliage reduces the amount of incident light, thereby limiting photosynthesis and plant yield. An excessive ash load may also result in mechanical plant damages, such as defoliation and breakage of the stem and twigs. Characterising crop vulnerability to ashfall is critical to conduct a comprehensive volcanic risk analysis. This is normally done by describing the relationship between the ash deposit thickness and the corresponding reduction in crop yield, i.e. a fragility function. However, ash depth measured on the ground surface is a crude proxy of ash retention on plant foliage as this metrics neglects other factors, such as ash particle size, leaf pubescence and condition of humidity at leaf surfaces, which are likely to influence the amount of ash that stays on leaves.</p><p>Here we report the results of greenhouse experiments in which we measured the percentage of leaf surface area covered by ash particles for one hairy leaf plant (tomato, Solanum lycopersicum L.) and one hairless leaf plant (chilli pepper, Capsicum annuum L.) exposed to simulated ashfalls. We tested six particle size ranges (≤ 90, 90-125, 125-250, 250-500, 500-1000, 1000-2000 µm) and two conditions of humidity at leaf surfaces, i.e. dry and wet. Each treatment consisted of 15 replicates. The tomato and chilli pepper plants exposed to ash were at the seven- and eight-leaf stage, respectively. An ash load of ~570 g m<sup>-2 </sup>was applied to each plant using a homemade ashfall simulator. We estimated the leaf surface area covered by ash from pictures taken before and immediately after the simulated ashfall. The ImageJ software was used for image processing and analysis.</p><p>Our results show that leaf coverage by ash increases with decreasing particle size. Exposure of tomato and chilli pepper to ash ≤ 90 μm always led to ~90% coverage of the leaf surface area. For coarser particles sizes (i.e. between 125 and 500 µm) and dry condition at leaf surfaces, a significantly higher percentage (on average 29 and 16%) of the leaf surface area was covered by ash in the case of tomato compared to chilli pepper, highlighting the influence of leaf pubescence on ash retention. In addition, for particle sizes between 90 and 500 µm, wetting of the leaf surfaces prior to ashfall enhanced the ash cover by 19 ± 5% and 34 ± 11% for tomato and chilli pepper, respectively.</p><p>These findings highlight that ash deposit thickness alone cannot describe the hazard intensity accurately. A thin deposit of fine ash (≤ 90 µm) will likely cover the entire leaf surface area, thereby eliciting a disproportionate effect on plant foliage compared to a thicker but coarser deposit. Similarly, for a same ash depth, leaf pubescence and humid conditions at the leaf surfaces will enhance ash retention, thereby increasing the likelihood of damage. Our study will contribute to improve the reliability of crop fragility functions used in volcanic risk assessment.</p>


2009 ◽  
Vol 72 (10) ◽  
pp. 2028-2037 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Survival and internalization characteristics of Escherichia coli O157:H7 in iceberg, romaine, and leaf lettuce after inoculation of leaf surfaces and soil were determined. A five-strain mixture of E. coli O157:H7 in water and cow manure extract was used as an inoculum for abaxial and adaxial sides of leaves at populations of 6 to 7 log and 4 log CFU per plant. The five strains were individually inoculated into soil at populations of 3 and 6 log CFU/g. Soil, leaves, and roots were analyzed for the presence and population of E. coli O157:H7. Ten (4.7%) of 212 samples of leaves inoculated on the adaxial side were positive for E. coli O157:H7, whereas 38 (17.9%) of 212 samples inoculated on the abaxial side were positive. E. coli O157:H7 survived for at least 25 days on leaf surfaces, with survival greater on the abaxial side of the leaves than on the adaxial side. All 212 rhizosphere samples and 424 surface-sanitized leaf and root samples from plants with inoculated leaves were negative for E. coli O157:H7, regardless of plant age at the time of inoculation or the location on the leaf receiving the inoculum. The pathogen survived in soil for at least 60 days. Five hundred ninety-eight (99.7%) of 600 surface-sanitized leaf and root samples from plants grown in inoculated soil were negative for E. coli O157:H7. Internalization of E. coli O157:H7 in lettuce leaves and roots did not occur, regardless of the type of lettuce, age of plants, or strain of E. coli O157:H7.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 469-475 ◽  
Author(s):  
W. Mack Thompson ◽  
Scott J. Nissen ◽  
Robert A. Masters

Laboratory experiments were conducted to identify adjuvants that improve absorption of imazethapyr, 2,4-D amine, and picloram by leafy spurge. Adjuvants (0.25% v/v) included crop oil concentrate (COC), methylated seed oil (MSO), nonionic surfactant (NIS), organosilicones (Silwet L-77®, Sylgard® 309, Silwet® 408), 3:1 mixtures of acetylinic diol ethoxylates (ADE40, ADE65, ADE85) with Silwet L-77, ammonium sulfate (2.5 kg ha−1), and 28% urea ammonium nitrate (UAN, 2.5% v/v). Adjuvants were combined with14C-herbicide and commercially formulated herbicide product. Leaves were harvested 2 DAT, rinsed with 10% aqueous methanol to remove surface deposits of herbicide, and dipped in 9:1 hexane:acetone to solubilize cuticular waxes. Imazethapyr absorption increased by 38 to 68% when UAN was combined with COC, NIS, or MSO. Total absorption of imazethapyr plus COC, MSO, or NIS exceeded 86% 2 DAT when UAN was added. Urea ammonium nitrate reduced the amount of imazethapyr associated with the cuticular wax by 2.0%. Imazethapyr absorption was similar on both the abaxial and adaxial leaf surface when UAN was not added; however, 12% more imazethapyr was absorbed from the abaxial leaf surface than from the adaxial leaf surface when UAN was combined with Sylgard 309. Uptake of 2,4-D ranged from 54 to 78% and was greatest with Silwet 408 and 3:1 mixture of ADE40: Silwet L-77. Picloram absorption ranged from 3 to 19%. Buffering picloram treatment solutions to pH 7 and including 2.5 kg ha-1ammonium sulfate increased picloram absorption to 37%.


Zootaxa ◽  
2011 ◽  
Vol 2988 (1) ◽  
pp. 37 ◽  
Author(s):  
GRAŻYNA SOIKA ◽  
MARCIN KOZAK

The purpose of this research was to investigate both the qualitative and quantitative morphological traits of Phytoptus tetratrichus Nalepa 1890 populations inhabiting three different lime tree species: Tilia cordata Mill., Tilia tomentosa Moench and Tilia americana L.. Morphological characters of two populations collected from T. cordata and T. tomentosa over three successive growing seasons were compared with the aid of canonical variate analysis. Additionally, individuals occurring on T. americana in a consecutive year were also studied. Protogyne and deutogyne females were differentiated using both qualitative and quantitative traits. For deutogyne females, individuals from all combinations of Tilia species × year (which constituted populations for comparison) clearly differed from each other. However, the differences between populations from T. cordata and T. tomentosa were less distinct. For protogyne females, observed differences were clearly visible. The between-season variation in morphological characters such as body size appeared to be quite large, indicating that morphological analysis based on observations from only a single season can be inaccurate. Deutogyne females of P. tetratrichus were observed to cause various types of damage symptoms: leaf-roll galls along the leaf edges of T. cordata; small round erinea on the lower leaf surface and small wart-like galls on the upper leaf surface of T. tomentosa; fingerlike galls on both leaf surfaces of T. americana.


Phytotaxa ◽  
2019 ◽  
Vol 422 (2) ◽  
pp. 201-205 ◽  
Author(s):  
JOEL CALVO ◽  
ROSA I. MENESES

Werneria lanatifolia is described as a new species from the central Andes. It is a minute plant characterized by a lanate indumentum on the adaxial leaf surface and involucre. The new species is compared with the morphologically closest taxa and useful characters for its proper identification are provided. Detailed pictures of living plants, a distribution map, and a dichotomous key including the species allied to W. lanatifolia are also presented.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document