scholarly journals Genetic control of traits related to phosphorus use efficiency in tropical maize

2015 ◽  
Vol 15 (2) ◽  
pp. 59-65 ◽  
Author(s):  
Flávia Ferreira Mendes ◽  
Lauro José Moreira Guimarães ◽  
Cláudia Teixeira Guimarães ◽  
João Cândido Souza ◽  
Paulo Evaristo Oliveira Guimarães ◽  
...  

Knowing the inheritance of traits is essential to establish selection strategies in breeding programs. The aim of this study was to determine the genetic control of traits related to the phosphorus use efficiency in maize. A total of 280 progenies were developed according to design III, which were evaluated in the field under high and low phosphorus (P) availability. The genetic variance components were estimated for the agronomic traits and indices that define P use efficiency. The results indicated that the additive and dominance effects were important in explaining the genetic variability for the flowering time, grain yield and P efficiency indices. However, dominance effects prevailed, indicating that breeding efforts should be made to develop hybrids exploiting the heterosis for traits related to P use efficiency.

Bragantia ◽  
2016 ◽  
Vol 75 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Daiana Alves da Silva ◽  
Jose Antonio de Fatima Esteves ◽  
João Guilherme Ribeiro Gonçalves ◽  
Cleber Vinícius Giaretta Azevedo ◽  
Tamires Ribeiro ◽  
...  

ABSTRACT Common bean is one of the most important legumes in Latin America, mostly grown in soils with low phosphorus (P) availability. Thus, this study aimed to evaluate the responses of 20 bean genotypes to P deficiency. The experiment was a completely randomized design in a 2 × 20 factorial arrangement; the first factor consisted of P levels and the second factor, of 20 bean genotypes, with six replications. The substrate was a Red Eutrophic Oxisol with low P content. For application of the P treatments, it was applied simple superphosphate, consisting of two levels: restrictive and control, with the application of 45 and 90 kg∙ha–1 of P2O5, respectively. At 28 days, we observed the first symptoms of nutrient deficiency, with the decrease in the relative chlorophyll index in the restrictive level treatment. In addition, the treatments were effective in differentiating effects of both factors levels of P and genotypes for most traits evaluated relative to shoot, root and grain yield. It was possible to classify the genotypes in relation to use efficiency and responsiveness to P application, according to their average yield performances. Seven genotypes presented better performances for both P levels, being classified as Efficient and Responsive: G 2333, IAC Carioca Tybatã, IAPAR 81, IAC Imperador, IAC Formoso, BRS Esplendor and IPR Tangará; the first four genotypes were also classified as Efficient and Responsive under hydroponic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amira Beroueg ◽  
François Lecompte ◽  
Alain Mollier ◽  
Loïc Pagès

Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L–1) and high P (HP, 1 mmol. L–1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.


2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Harsh Kumar Dikshit ◽  
Venkata Ravi Prakash Reddy ◽  
Gyan Prakash Mishra ◽  
Muraleedhar Aski ◽  
Renu Pandey ◽  
...  

Phosphorus (P) deficiency is one of the serious problems affecting plant growth in mungbean in different parts of the world. The root, shoot and biomass related traits were investigated for identifying P-efficient genotypes in 54 mungbean genotypes under low-P (LP) and normal-P (NP) conditions. In this study, the membership function value of P use efficiency of studied traits was used as a compendious index for studying P use efficiency (PUE) in mungbean. Among the studied traits, mean values of total root volume, chlorophyll concentration, root dry weight (RDW) and root to shoot ratio increased >25% under LP condition indicating that these traits are highly responsive to P deficiency. Correlation and stepwise regression analysis revealed that RDW explained most of the variation and could be used as a clear indicator of PUE. The five highly P-efficient genotypes namely, MH 805, M 42, PUSA 9531, EC 398885 and M 209 with high MFVP values may be used for PUE improvement in mungbean.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Ishan Ajmera ◽  
T. Charlie Hodgman ◽  
Chungui Lu

The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security.


Author(s):  
Vinícius José Ribeiro ◽  
Edson Marcio Mattiello ◽  
Deusanilde de Jesus Silva ◽  
Leonardus Vergütz

Low phosphorus use efficiency (PUE) is one of the major reasons of poor production worldwide. Among the various approaches used to enhance PUE, polymer coated fertilizers are relatively a new concept. Its main advantages are that they dissolve slowly and release nutrients to plants gradually during the growing season. Keeping this in view, a study was performed in the laboratory to evaluate polymers coated monoammonium phosphate (MAP) to enhance PUE. Commercial MAP and MAP coated with biodegradable polymers with Krafit black liquor (BL) and cellulose acetate (CA) in the concentration (0.5, 1.0, 2.0 wt % coating). The effectiveness of these coatings was assessed by the electrical conductivity (EC) and phosphorus release (PR) in a kinetic experiment. The kinetic study was carried out in a controlled environment (± 25 °C), following the release pattern of P from 1.5 g of fertilizer in 50 mL of H2O, with and without the coatings. The objective of this work was to study different lignin-based coatings and the phosphorus release behavior of the resulting fertilizer. EC showed to be an effective method of indirect analysis of P releasing from coated MAP. The BL coating presented better results than the CA in terms of controlling the release of P, and the higher the coating ratio (1.0 and 2.0 %) the slower the release of P.


2021 ◽  
Vol 4 ◽  
Author(s):  
Victoria Cerecetto ◽  
Elena Beyhaut ◽  
Laurie Amenc ◽  
Carlos Trives ◽  
Nora Altier ◽  
...  

Phosphorus deficiency can be a major limitation to legume growth when plant nitrogen nutrition depends on symbiotic nitrogen fixation. One possible approach to overcome this constraint is the selection of plant and rhizobial genotypes capable of metabolizing complex forms of phosphorus in the nodules. The aim of this research was to study the rhizobial phytase transcript abundance in nodules of two soybean cultivars (Glycine max (L.) Merr.) grown under two different phosphorus conditions in hydroaeroponic conditions. An in situ RT-PCR of a rhizobial phytase was performed in microtome sections of soybean nodules of two cultivars growing under phosphorus sufficiency vs. phosphorus deficiency. The results showed that the plant cultivar may influence the level of transcript abundance of the bacterial phytase and in consequence affect the phosphorus use efficiency of nitrogen-dependent Bradyrhizobium spp.-soybean symbioses. Thus, the selection of a good combination of plant and rhizobial genotypes should be a priority when breeding for phosphorus deficiency is performed.


AoB Plants ◽  
2019 ◽  
Author(s):  
M A Míguez-Montero ◽  
A Valentine ◽  
M A Pérez-Fernández

Abstract The impact of phosphorus (P) nutrition on plant growth, symbiotic N2 fixation, and phosphorus and nitrogen use and their assimilation was investigated in four leguminous plants of the genus Cytisus. Plants inoculated with Rhizobium strains isolated from plants of the four species growing in the wild were crop under controlled conditions in soils with either low P (5 µM) or high P (500 µM). The experiment was replicated in the presence and absence of plant irrigation to test for the effects of drought stress of inoculated and non-inoculated plants under the two P levels of fertilization. P-low treatments increased nodule production while plant biomass and shoot and root P and N contents were maximum at sufficient P. The reduction of P in the soil clearly induced biological nitrogen fixation and greater phosphorus and nitrogen uptake efficiencies, as shown by the total N and P accumulated in plants. Similarly, distinct tolerances to drought support this idea. Cytisus balansae had the lowest tolerance to water scarcity. Cytisus multiflorus and Cytisus scoparius were the most resistant species to drought, with this resistance enhanced in the inoculated plants. In the four species, the inoculation treatment clearly enhanced N-use efficiency, whereas P-use efficiency was greater in the non-inoculated plants in the irrigated treatment. With a P-induced demand for N, the plants nodulated prolifically and increased N supply from biological fixation. The physiological basis for N2-fixing C. scoparius and C. striatus maintaining growth at low P supply and responding to greater P supply is through balanced acquisition of P and N for plant demand. Native shrubby legumes are key species in natural ecosystems due to their capability to increase the net N budget in plants and soils and because they modulate the phosphorus availability. Four legumes in the genus Cytisus either native to or commonly represented in the Iberian Peninsula proved to be able shift their N use depending on the soil P availability and on the interactions established with their Bradyrhizobium symbionts. In the four species the inoculation treatment clearly enhanced N-use efficiency and drought tolerance, whereas P-use efficiency was greater in the non-inoculated plants in the irrigated treatment.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 191 ◽  
Author(s):  
Patricia Poblete-Grant ◽  
Philippe Biron ◽  
Thierry Bariac ◽  
Paula Cartes ◽  
María de La Luz Mora ◽  
...  

To maintain grassland productivity and limit resource depletion, scarce mineral P (phosphorus) fertilizers must be replaced by alternative P sources. The effect of these amendments on plant growth may depend on physicochemical soil parameters, in particular pH. The objective of this study was to investigate the effect of soil pH on biomass production, P use efficiency, and soil P forms after P amendment application (100 mg kg−1 P) using poultry manure compost (PM), rock phosphate (RP), and their combination (PMRP). We performed a growth chamber experiment with ryegrass plants (Lolium perenne) grown on two soil types with contrasting pH under controlled conditions for 7 weeks. Chemical P fractions, biomass production, and P concentrations were measured to calculate plant uptake and P use efficiency. We found a strong synergistic effect on the available soil P, while antagonistic effects were observed for ryegrass production and P uptake. We conclude that although the combination of PM and RP has positive effects in terms of soil P availability, the combined effects of the mixture must be taken into account and further evaluated for different soil types and grassland plants to maximize synergistic effects and to minimize antagonistic ones.


Revista CERES ◽  
2017 ◽  
Vol 64 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Gabriel Gonçalves dos Reis ◽  
Felipe Bermudez Pereira ◽  
Italo Stefanine Correia Granato ◽  
Júlio César DoVale ◽  
Roberto Fritsche-Neto

ABSTRACT Brazil generates an annual demand for more than 2.83 million tons of phosphate fertilizers. Part of this is due to low P use efficiency (PUE) by plants, particularly in current maize cultivars. Thus, the aim of this study was to create indexes that allow accurate selection of maize genotypes with high PUE under conditions of either low or high P availability. The experiment was conducted in a greenhouse (20º45'14"S; 42º52'53"W) at the Universidade Federal de Viçosa in October 2010. We evaluated 39 experimental hybrid combinations and 14 maize inbred lines with divergent PUE under two conditions of P availability. The relative importance of the traits studied was analyzed and estimated by principal component analysis, factor analysis, and establishment of selection indexes. To obtain genotypes responsive to high P availability, the index SIHP (selection index for high phosphorus) = 0.3985 RDM + 0.3099 SDM + 0.5567 RLLAT + 0.2340 PUEb - 0.1139 SRS is recommended. To obtain genotypes tolerant to low P availability, the index SILP (selection index for low phosphorus) = 0.3548 RDM + 0.3996 RLLAT + 0.3344 SDM + 0.0041 SH/RS - 0.1019 SRS is suggested.


Sign in / Sign up

Export Citation Format

Share Document