scholarly journals Fruit quality of West Indian cherry under saline water irrigation and nitrogen-potassium fertilization

Author(s):  
Cassiano N. de Lacerda ◽  
Geovani S. de Lima ◽  
Evandro M. da Silva ◽  
Reginaldo G. Nobre ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The presence of waters with high salt concentration stands out as a limiting factor for the quality of agricultural production. Thus, this study aimed to evaluate the fruit quality of West Indian cherry cv. Flor Branca, subjected to irrigation with water of different salinity levels and combinations of nitrogen-potassium fertilization, between 630 and 750 days after transplanting in the field. A randomized block design was used in a 5 × 4 factorial arrangement, with three replicates, whose treatments consisted of five values of electrical conductivies of irrigation water - ECw (0.3, 1.3, 2.3, 3.3 and 4.3 dS m-1) and four combinations of nitrogen and potassium fertilization (70-50, 100-75, 130-100 and 160-125% of recommendation of N and K2O, respectively). Electrical conductivity of irrigation water above 0.3 dS m-1 reduces the polar and equatorial diameters, hydrogen potential and flavonoid concentration and increases titratable acidity in West Indian cherry fruits. N-K2O combination of 70/50% of fertilizer recommendation reduces the effect of salt stress of irrigation water on the anthocyanin concentration in the fruits at ECw of 1.3 dS m-1 and ascorbic acid at ECw of 3.3 and 4.3 dS m-1.

2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Evandro Manoel Da Silva ◽  
Hans Raj Gheyi ◽  
Reginaldo Gomes Nobre ◽  
Joicy Lima Barbosa ◽  
Bárbara Genilze Figueiredo Lima Santos ◽  
...  

West Indian cherry stands out among the fruits cultivated for the pharmacological and alimentary importance, but its quality can be affected by irrigation water salinity and fertilization management. In this context, this research aimed to study the effect of irrigation water of different salinities and combinations of nitrogen and potassium fertilization on the physical and physico-chemical quality of bioactive compounds in West Indian cherry fruits. The experiment was carried out in the field, using lysimeters of 60 L, in the Experimental Area of the Centro de Ciências e Tecnologia Agroalimentar (CCTA) of Universidade Federal de Campina Grande (UFCG), Pombal, PB, in a randomized block design, with treatments arranged in a 5 x 4 factorial scheme, referring to five irrigation water salinities (ECw): 0.3, 1.3, 2.3, 3.3 and 4.3 dS m-1 and four combinations (C) of doses of nitrogen (N) and potassium (K2O): C1 = 70% N + 50% K2O; C2 = 100% N + 75% K2O; C3 = 130% N + 100% K2O and C4 = 160% N + 125% K2O, of the recommended dose for West Indian cherry, with three replicates and one plant per plot consisting of a lysimeter. The cv. Flor Branca grafted on cv. Junco was used in the study. The increase in salinity of irrigation water reduced the size, weight and vitamin C content of the fruits, but, the combinations of N and K fertilization did not affect fruit shape and the content of anthocyanin, carotenoids, pH, titratable acidity, total soluble solids and fruit flavor. Fertilization combinations consisting of C1 and C2 treatments promoted the largest fruit size under irrigation with ECw of up to 1.3 dS m-1 and greater mass accumulation. Fertilization doses above C2 combinations negatively affected fruit quality.


Author(s):  
Geovani S. de Lima ◽  
Francisco W. A. Pinheiro ◽  
Adaan S. Dias ◽  
Hans R. Gheyi ◽  
Lauriane A. dos A. Soares ◽  
...  

ABSTRACT Due to water limitations in terms of both quantity and quality in the semi-arid region of northeastern Brazil, the use of waters with high concentrations of salts become necessary in irrigated agriculture. Thus, this study aimed to evaluate the growth and production of grafted West Indian cherry under saline water irrigation and potassium fertilization. The experiment was carried out in drainage lysimeters under protected environment conditions, using a Regolithic Neosol with sandy loam texture. Treatments resulted from the combination of two levels of electrical conductivity - ECw (0.8 and 3.8 dS m-1) of irrigation water and four doses of potassium (50, 75, 100 and 125% of the recommendation of Musser), arranged in a randomized block design, with three replicates. Irrigation water salinity of 3.8 dS m-1 markedly inhibited the growth in stem diameter and mean fruit weight of West Indian cherry. Potassium fertilization mitigated the deleterious effects of salt stress on the relative growth in stem diameter of the rootstock, total number of fruits and total fresh mass of fruits of West Indian cherry, with highest values in plants irrigated with water of lowest level of salinity associated with the highest dose of K2O.


Author(s):  
Geovani Soares de Lima ◽  
Adaan Sudario Dias ◽  
Leandro De Pádua Souza ◽  
Francisco Vanies da Silva Sá ◽  
Hans Raj Gheyi ◽  
...  

Due to the scarcity of water in the semi-arid region of Northeast Brazil, in both quantitative and qualitative terms, the use of saline water in agriculture should be considered as one alternative for irrigated agriculture. This study therefore aimed to evaluate the photosynthetic pigments, growth and production of West Indian Cherry as a function of irrigation using waters with different salinity levels and potassium (K) fertilization, after grafting. The study was carried out in drainage lysimeters under greenhouse conditions, in a eutrophic Regolithic Neosol with sandy loam texture, in the municipality of Campina Grande, PB. The experiment was set in a randomized block design, to test two levels of irrigation water electrical conductivity - ECw (0.8 and 3.8 dS m-1) and four K2O doses - KD (50, 75, 100 and 125% of recommendation), with three replicates. The dose relative to 100% corresponded to 79.2 mg K2O kg-1 of soil. Irrigation with high salinity water stimulated the biosynthesis of chlorophyll b and carotenoids, while the chlorophyll a content and the growth of the cherry were reduced markedly in the post-grafting phase. The harmful effects of salinity on the total number of fruit and fresh mass of West Indian Cherry fruit were minimized with potassium fertilization.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 796
Author(s):  
Mohamed A. Mattar ◽  
Said S. Soliman ◽  
Rashid S. Al-Obeed

A field experiment was conducted on date palm trees (Phoenix dactylifera ‘Succary’) cultivated on sandy loam soil from 2017 to 2018. This study investigated the effects of providing water of three different qualities, namely freshwater (FR) and two saline water sources: reclaimed wastewater (RW) and well-water (WE) applied through three irrigation levels representing 50% (I50), 100% (I100), and 150% (I150) of crop evapotranspiration (ETc), on the soil water and salt distribution patterns, yield, water productivity (WP), and fruit quality of the ′Succary′ date palm. The electrical conductivity (ECw) of FR, RW, and WE were 0.18, 2.06, and 3.94 dS m−1, respectively. Results showed that WE applied by the I150 treatment had the highest soil water content, followed by RW used in the I100 irrigation level and FR with I50, whereas the soil salt content was high for WE applied in the I50 level and low for FR applied by the I150 treatment. Deficit irrigation (I50) of date palms with either RW or WE reduced date yields on average 86 kg per tree, whereas the yield increased under over-irrigation (I150) with FR to 123.25 kg per tree. High WP values were observed in the I50 treatments with FR, RW, or WE (on average 1.82, 1.68, and 1.67 kg m−3, respectively), whereas the I150 treatment with each of the three water types showed the lowest WP values. Fruit weight and size were the lowest in the full irrigation (I100) with WE, whereas the I150 treatment with RW showed the highest values. There were no significant differences in either total soluble solids (TSS) or acidity values when the irrigation level decreased from 100% to 50% ETc. Compared with both I50 and I100 treatments, reduced values of both TSS and acidity were observed in the I150 treatment when ECw decreased from 3.94 to 0.18 dS m−1,. Fruit moisture content decreased with the application of saline irrigation water (i.e., RW or WE). Total sugar and non-reducing sugar contents in fruits were found to be decreased in the combination of RW and I150, whereas the 50% ETc irrigation level caused an increment in both parameters. These results suggest that the application of deficit irrigation to date palm trees grown in arid regions, either with FR or without it, can sufficiently maximize WP and improve the quality of fruits but negatively affects yield, especially when saline water is applied. The use of saline water for irrigation may negatively affect plants because of salt accumulation in the soil in the long run.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Leontina Lipan ◽  
Aarón A. Carbonell-Pedro ◽  
Belén Cárceles Rodríguez ◽  
Víctor Hugo Durán-Zuazo ◽  
Dionisio Franco Tarifa ◽  
...  

Mango is one of the most cultivated tropical fruits worldwide and one of few drought-tolerant plants. Thus, in this study the effect of a sustained deficit irrigation (SDI) strategy on mango yield and quality was assessed with the aim of reducing irrigation water in mango crop. A randomized block design with four treatments was developed: (i) full irrigation (FI), assuring the crop’s water needs, and three levels of SDI receiving 75%, 50%, and 33% of irrigation water (SDI75, SDI50, and SDI33). Yield, morphology, color, titratable acidity (TA), total soluble solids (TSS), organic acids (OA), sugars, minerals, fiber, antioxidant activity (AA), and total phenolic content (TPC) were analyzed. The yield was reduced in SDI conditions (8%, 11%, and 20% for SDI75, SDI50, and SDI33, respectively), but the irrigation water productivity was higher in all SDI regimes. SDI significantly reduced the mango size, with SDI33 generating the smallest mangoes. Peel color significantly changed after 13 days of ripening, with SDI75 being the least ripe. The TA, AA, and citric acid were higher in SDI75, while the TPC and fiber increased in all SDI levels. Consequently, SDI reduced the mango size but increased the functionality of samples, without a severe detrimental effect on the yield.


2017 ◽  
Vol 9 (10) ◽  
pp. 168 ◽  
Author(s):  
Francisco V. da S. Sá ◽  
Hans R. Gheyi ◽  
Geovani S. de Lima ◽  
Emanoela P. de Paiva ◽  
Pedro D. Fernandes ◽  
...  

This study aimed to evaluate the interaction between the fertilization with nitrogen (N) and phosphorus (P) and irrigation with saline water on the water relations, gas exchanges and chlorophyll a fluorescence in West Indian cherry in the vegetative stage. The study was carried out in protected environment, using lysimeters filled with clay loam Regolithic Neosol, with low P content, installed in a randomized block design, arranged in a factorial scheme with five levels of electrical conductivity of irrigation water (ECw), and four managements of P and N fertilization, with three replicates and one plant per plot. Along the experiment, water relations, gas exchanges and chlorophyll a fluorescence were evaluated in West Indian cherry plants. The increase in irrigation water salinity reduces the gas exchanges of the plants, but the increment of 40% in N supply increases the photosynthetic activity of West Indian cherry at recommendation levels higher than 100:100% of the P/N ratio, when irrigated with ECw of up to 3.0 dS m-1. The combined action of N and P, at doses of 140:140% N/P recommendation, increases leaf turgor in the plants, regardless of the ECw level. The increment of 40% in N dose reduces the effects of salinity on the initial fluorescence of chlorophyll a in West Indian cherry irrigated with up to 2.2 dS m-1.


2019 ◽  
Vol 37 (3) ◽  
pp. 331-337
Author(s):  
Carlos Francisco Ragassi ◽  
Juliana Zucolotto ◽  
Lucas M Gomes ◽  
Cláudia SC Ribeiro ◽  
Nuno Rodrigo Madeira ◽  
...  

ABSTRACT Mechanizing the harvest of Jalapeño pepper involves changes in the production system. Spacings between plants in rows (10 to 40 cm; 60 cm fixed between rows) were evaluated in relation to plant architecture, productivity and fruit quality of cultivar BRS Sarakura during three years, in a randomized complete block design with five replicates. Productivity (41.9 to 78.8 t ha-1) and plant height (40.1 to 47.3 cm) responded linearly to density; on the other hand, productivity per plant responded negatively (0.48 to 1.04 kg plant-1). The stem first bifurcation height was little influenced. Fruit chemical analyses were carried out in the second year of the experiment; spacing significantly influenced pH (5.36 to 4.84), total titratable acidity (TTA) (0.48 to 0.36%) and total soluble solids (TSS)/TTA ratio (11.5 to 15.6); no influence on TSS (5.65%) was noticed, though. The increase of plant population provided an increase in productivity without affecting fruit quality; the highest height of the first bifurcation achieved may not be enough to enable mechanized harvesting of the cultivar BRS Sarakura.


Author(s):  
M. V. Dlamini ◽  
M. T. Masarirambi

Saline irrigation water is becoming an important water source as fresh water is fast becoming a scarce resource in many areas of the world, including Eswatini, especially in arid and semi-arid regions.  A study to test the response of two varieties of spinach (fordhook giant and mustard) to salinity was conducted in a field pot experiment at the Faculty of Agriculture at the Luyengo Campus of the University of Eswatini.  The treatments were laid in a randomized block design (RCBD).  The experiment consisted of four treatments, each replicated twelve times.  Treatments were salinity levels of 0.0 dS/m, 1.5 dS/m, 2.0 dS/m and 3.5 dS/m.  All the treatments were subjected to similar agronomic practices. Spinach was grown and observed for a period of five weeks.  Plant height was measured and the number of leaves counted weekly throughout the experiment. Significant differences (P < 0.05) between salinity treatments were obtained for plant height beginning in week 2 but were more pronounced in week 3, 4 and week 5.  No significant differences were obtained for the number of leaves.  There were however, clear significant differences between spinach irrigated with none saline irrigation water compared to saline irrigation water.   It was concluded that irrigating spinach with saline water of more than 2.0 dS/m drastically reduce plant growth but not the number of leaves under the conditions of the experiment.


2020 ◽  
Vol 33 (1) ◽  
pp. 184-194
Author(s):  
GEOVANI SOARES DE LIMA ◽  
COSMO GUSTAVO JACOME FERNANDES ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI ◽  
PEDRO DANTAS FERNANDES

ABSTRACT The objective of this study was to evaluate the gas exchange, chloroplast pigments and growth of ‘BRS Rubi do Cerrado’ passion fruit as a function of irrigation with saline water and potassium fertilization in the seedling formation stage. The experiment was conducted under greenhouse conditions in the municipality of Pombal-PB, Brazil. A randomized block design was used in 5 x 2 factorial scheme, corresponding to five levels of water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7 and 3.5 dS m-1) and two doses of potassium - KD (50 and 100% of the recommendation), with four replicates and two plants per plot. Water salinity from 0.3 dS m-1 reduced the stomatal opening, transpiration, CO2 assimilation and inhibited the growth of ‘BRS Rubi do Cerrado’ passion fruit plants, at 40 days after sowing. There was no CO2 restriction in the substomatal cavity of passion fruit plants grown under water salinity from 0.3 dS m-1. Potassium dose of 150 mg kg-1 of soil, corresponding to 100%, intensified the effect of salt stress on the assimilation rate and instantaneous carboxylation efficiency in 'BRS Rubi do Cerrado' passion fruit. There was interaction between water salinity levels and potassium doses for the chlorophyll a and b contents of 'BRS Rubi do Cerrado' passion fruit.


Author(s):  
Mônica S. da S. Sousa ◽  
Vera L. A. de Lima ◽  
Marcos E. B. Brito ◽  
Luderlândio de A. Silva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT The salinity of water and soil reduces the growth and production of crops, especially the fruit trees, such as papaya. Thus, it is necessary to obtain management alternatives for cultivation under these conditions. Therefore, the objective of this study was to evaluate the growth and phytomass of papaya cultivated under irrigation with saline water and organic fertilization. An experiment was set up using a randomized block design, with the treatments distributed in a 5 x 2 factorial scheme, consisting of five levels of salinity of irrigation water (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and two levels of organic fertilization (10 and 20 L of bovine manure per plant), with three replications, totaling thirty experimental plots. Growth variables of papaya were evaluated. Papaya plants were negatively affected by irrigation water salinity, with a greater effect on the number of leaves and on dry phytomass of leaves, with no effect of bovine manure levels.


Sign in / Sign up

Export Citation Format

Share Document