scholarly journals Evaluation of the effect of chlorhexidine and sodium hypochlorite in adhesive cementation of fiber posts - in vitro study

2019 ◽  
Vol 48 ◽  
Author(s):  
Tainara CONTE ◽  
Guilherme Schmitt de ANDRADE ◽  
Ana Paula GADONSKI ◽  
Daniella Cristo SANTIN ◽  
Fabiana Scarparo NAUFEL

Abstract Introduction The attachment of fiberglass posts is achieved through an adhesive process. Failures in adhesion may occur due to the hydrolytic degradation of the adhesives, or to the degradation of the collagen fibres of the hybrid layer by intrinsic enzymes. Objective To evaluate the effect of chlorhexidine and sodium hypochlorite treatment on bond strength to dentin. Material and method Thirty bovine roots were randomly distributed into 3 groups (n=10): a) Control, b) 2% Chlorhexidine, and c) 5% Sodium Hypochlorite. Next, RelyX® ARC resin cement was used to cement the post. Each specimen resulted in samples from the three root thirds that were submitted to the pushout test (MPa) at 24 hours and 12 months. Bond strength values were analysed using the Kolmogorov-Smirnov, 3-way ANOVA and Tukey tests. The fracture mode of the pin was also analysed using stereomicroscopy. Result There were no significant differences between treatments at the immediate time (p=0.0644) or in the interaction of factors (p=0.1935). After one year, the experimental groups showed no significant differences in bond strength in relation to the control group, with the exception of the cervical third of the chlorohexidine group in which there was a significant loss of adhesion. As for the fracture mode, there was a predominance of the mixed type in all groups and thirds. Conclusion The use of chlorhexidine or hypochlorite provides neither benefits nor losses in the adhesive bond strength of fiberglass posts. However, there is an influence of the root thirds, with the worst bond strength in the apical third.

2017 ◽  
Vol 19 (2) ◽  
pp. 61
Author(s):  
Luis A. Herrera-Ocampo DDS, MSD ◽  
Mauricio Montero-Aguilar DDS, MSc ◽  
Erika Alfaro-Mayorga DDS, MSD

The purpose of this study was to determine the effect of different surface treatments on the bond strength between resin cements and quartz fiber-reinforced resin posts. Materials and methods: Sixty quartz fiber-reinforced resin posts (DT Light-Post™, Bisco™) were randomly divided into 12 experimental groups (n=5), according to the resin cement used (Biscem™ or Duolink™) and the surface treatment: Alcohol (control group), silanized, primer, sandblasted, sandblasted + silanized or sandblasted + primer. Cylindrical resin specimens were obtained using nanohybrid resin. The posts were cemented to the resin discs and push-out tests were conducted. Data were analyzed with ANOVA and T test for averages comparison and the Tukey HSD test with a 95% level of significance. Results: Biscem™ cement generally showed higher bond strength when compared to Duolink™ Significant differences were found between the control group and the sandblasted + silane and sandblasted + primer groups when using Duolink™cement. With Biscem™ cement, no differences between groups or with the control group were found.. Conclusion: Surface treatments on quartz fiber-reinforced resin poles seem to have no significant effect on the bond strength to resin cements, except when using Duolink™ cement with sandblasted posts and using silane or primer.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Menna Ahmed ElGendy ◽  
Ihab Mosleh ◽  
Hanaa Zaghloul

Objective: the purpose of the study was to evaluate the micro-shear bond strength of different cements to translucent zirconia before and after thermocycling aging. Material and methods: Twelve translucent zirconia ceramic discs were used in the study. Specimens were sandblasted using 50 ‎μm aluminum oxide (Al2O3) particles. The specimens were divided into three groups (n = 4) according to the cement type: Panavia resin cement (control group), resin modified glass ionomer (RMGI), and Activa bioactive cement. Each group was further sub-divided into two equal subgroups (n = 2) according to whether the specimens were subjected to thermocycling or not. Thermocycling was performed in distilled water at 5000 cycles between 5 oC - 55 oC. The micro-shear bond strength test (μSBS) was measured using universal testing machine. Kruskal-Wallis test was used to compare between the three cements. Dunn’s test was used for pair-wise comparisons when Kruskal-Wallis test is significant. Mann-Whitney U test was used to compare between micro-shear bond strength before and after thermocycling P ≤ 0.05. Results: In non-aged subgroups, there was no significant difference between Panavia and Activa; both showed significantly the highest mean μSBS values (22.9 MPa, 31.3 MPa respectively). While, RMGI showed the lowest μSBS values (4.7 MPa).  In thermocycled subgroups, Panavia showed significantly the highest mean μSBS values (32.2 MPa). There was no significant difference between RMGI and Activa; both showed the lowest significant mean μSBS values (3.2 MPa and 8.7 MPa respectively). Conclusions: RMGI and Activa couldn’t be considered long-term reliable materials for cementing zirconia. However, Panavia provided the most durable bond to zirconia.KEYWORDSBioactive cement; Micro-shear bond strength; Resin cement; Translucent zirconia.


Author(s):  
Rathika Rai ◽  
M. A. Easwaran ◽  
K. T. Dhivya

Aim: To evaluate the surface detail reproduction of dental stone this is immersed in different disinfectant solution and studied under stereomicroscope. Methodology: Total number of 30 specimens of dental stone (Type III) were made with measurements of 1.5cm diameter and 1cm height .This samples are divided in to 3 groups group A,B,C. were A is immersed in Distilled water which was taken as control group ;B is immersed in 2% Glutaraldehyde and C is immersed in 5%sodium hypochlorite. Each specimen were immersed in the disinfectant solution for 15 minutes and dried under room temperature for 24 hrs. After 24 hrs each specimens are studied under stereomicroscope for surface details. Result: The results showed no significant difference in the surface irregularities and porosities for a group 1 and group 2 except group 3 which showed significant increase in the porosities, surface irregularities and erosions after disinfection with 5% NaHOCl by immersion method. Conclusion: The surface detail reproduction capacity of die stone was adversely affected when 5% Sodium hypochlorite was used as disinfectant solution when compare d to control group and 2% Glutaraldehyde


2013 ◽  
Vol 18 (3) ◽  
pp. 101-106 ◽  
Author(s):  
Sissy Maria Mendes Machado ◽  
Diego Bruno Pinho do Nascimento ◽  
Robson Costa Silva ◽  
Sandro Cordeiro Loretto ◽  
David Normando

OBJECTIVE: To evaluate in vitro the effects of tooth whitening using gel with Amorphous Calcium Phosphate (ACP) on the bond strength of metal brackets. METHODS: Thirty-six bovine incisors were sectioned at the crown-root interface, and the crowns were then placed in PVC cylinders. The specimens were divided into 3 groups (n = 12) according to whitening treatment and type of gel used, as follows: G1 (control) = no whitening; G2 = whitening with gel not containing ACP (Whiteness Perfect - FGM), G3 = whitening with gel containing ACP (Nite White ACP - Discus Dental). Groups G2 and G3 were subjected to 14 cycles of whitening followed by an interval of 15 days before the bonding of metal brackets. Shear bond strength testing was performed on a Kratos universal test machine at a speed of 0.5 mm/min. After the mechanical test, the specimens were assessed to determine the adhesive remnant index (ARI). The results were subjected to ANOVA, Tukey's test and Kruskal-Wallis test (5%). RESULTS: Significant differences were noted between the groups. Control group (G1 = 11.10 MPa) showed a statistically higher shear bond strength than the groups that underwent whitening (G2 = 5.40 Mpa, G3 = 3.73 MPa), which did not differ from each other. There were no significant differences between the groups in terms of ARI. CONCLUSION: Tooth whitening reduces the bond strength of metal brackets, whereas the presence of ACP in the whitening gel has no bearing on the results.


2018 ◽  
Vol 6 (9) ◽  
pp. 1707-1711
Author(s):  
Rami M. Atia ◽  
Nada Omar ◽  
Haidy Nabil ◽  
Yousra Aly

OBJECTIVE: The aim of this in vitro study was to assess the effect of obturation technique and cementation timings on the bonding of fibre-reinforced posts to the root canal walls. METHODS: Twenty extracted teeth were randomly allocated to two groups according to the obturation technique and cementation timing. Central incisors with single canals were used after being decoronated. Every extracted tooth of the {vertical compaction group} (VC) group (n = 10) had been obturated using the {E & Q plus obturation system} with posts cemented in the same day; The other (CO) conventional group (n = 10) teeth were obturated using the conventional lateral compaction technique and posts cemented after one week. “SF“ Fiber posts were used after bonding and cementation using Rely X ARC resin cement with all the endodontically treated teeth. The push-out test was performed in a universal testing machine. Data were analysed by 2 way analysis of variance with Statistical significance was set to 0.05. RESULTS: Heat softened gutta percha group showed more push out the bond strength of the bonded posts than the conventional obturation group (p < 0.05). In the middle region, there was no statistical significance between the two groups while there was significance in the coronal and apical thirds. CONCLUSION: The vertical compaction technique and early cementation improved the bond strength of the resin posts in comparison to the conventional obturation technique with late cementation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zohreh Moradi ◽  
Farnoosh Akbari ◽  
Sara Valizadeh

Aim. This study aimed to assess shear bond strength (SBS) of resin cement to zirconia ceramic with different surface treatments by using Single Bond Universal. Methods. In this in vitro study, 50 zirconia discs (2 × 6 mm) were divided into 5 groups of (I) sandblasting with silica-coated alumina (CoJet)  + silane + Single Bond 2, (II) sandblasting with CoJet + Single Bond Universal, (III) sandblasting with alumina + Single Bond Universal, (IV) sandblasting with alumina + Z-Prime Plus, and (V) Single Bond Universal with no surface treatment. Resin cement was applied in plastic tubes (3 × 5 mm2), and after 10,000 thermal cycles, the SBS was measured by a universal testing machine. The mode of failure was determined under a stereomicroscope at × 40 magnification. Data were analyzed using one-way ANOVA. Results. The maximum (6.56 ± 4.29 MPa) and minimum (1.94 ± 1.96 MPa) SBS values were noted in groups III and I, respectively. Group III had the highest frequency of mixed failure (60%). Group V had the maximum frequency of adhesive failure (100%). Conclusion. Single Bond Universal + sandblasting with alumina or silica-coated alumina particles is an acceptable method to provide a strong SBS between resin cement and zirconia.


2019 ◽  
Vol 13 (4) ◽  
pp. 305-310
Author(s):  
Mina Biria ◽  
Sajedeh Namaei Ghasemi ◽  
Seyedeh Mahsa Sheikh-Al-Eslamian ◽  
Narges Panahandeh

Background. This in vitro study aimed to evaluate the microshear bond strength (μSBS), microhardness and morphological characteristics of primary enamel after treating with sodium fluoride (NaF) and acidulated phosphate fluoride (APF). Methods. Forty-eight primary canines were cut into mesial and distal sections and assigned to five groups randomly: group 1 (immersed in saliva as a control), group 2 (treated with NAF and immersed in saliva for 30 minutes), group 3 (treated with APF and immersed in saliva for 30 minutes), group 4 (treated with NAF and immersed in saliva for 10 days), and group 5 (treated with APF and immersed in saliva for 10 days). Composite resin (Filtek Z250) was bonded on the specimens (n=15) for measuring the μSBS. After storage in 37°C artificial saliva for 24 hours, µSBS and Vickers hardness tests (10 readings) were performed. The data were analyzed using one-way ANOVA and Kolmogorov-Smirnov, Levene’s and Tukey HSD tests (P<0.05). Morphological analysis of enamel and modes of failure were carried out under a scanning electron microscope (SEM) on two remaining specimens. Results. Significant differences in μSBS were only noted between groups 2 and 4 (P=0.024). Group 3 showed a significant decrease in hardness after storage in artificial saliva (P<0.001), with a significantly lower hardness than the other groups (P<0.001). The SEM observations showed irregular particles in groups 3 and 5; uniform, smooth and thin coats were seen in groups 2 and 4. Conclusion. Fluoride therapy with NaF and APF gels prior to restorative treatments had no adverse effects on the microshear bond strength.


2006 ◽  
Vol 17 (4) ◽  
pp. 290-295 ◽  
Author(s):  
Marcos Paulo Nagayassu ◽  
Luciana Keiko Shintome ◽  
Eduardo Shigueyuki Uemura ◽  
José Eduardo Junho de Araújo

The purpose of this in vitro study was to evaluate the effect of different surface treatments on the shear bond strength of a resin-based cement to porcelain. Sixty pairs of 50% aluminous porcelain discs were fabricated. In each pair, one disc measured 6 mm in diameter X 3 mm thickness (A) and the other measured 3 mm in diameter X 3mm thickness (B). The specimens were randomly assigned to 6 groups (n=10 pairs of discs), according to the surface treatment: etching with 10% hydrofluoric acid for 2 or 4min (G1 and G2); 50-µm particle aluminum oxide sandblasting for 5 s (G3); sandblasting followed by etching for 2 or 4min (G4 and G5) and control - no treatment (G6). A silane agent was applied to the treated surface of both discs of each pair. Bistite II DC dual-cure resin cement was applied and the B discs were bonded to their respective A discs. Specimens were stored in distilled water at 37ºC for 24 h and were tested in shear strength at a crosshead speed of 2 mm/min. Means in MPa were: G1: 14.21 ± 4.68; G2: 8.92 ± 3.02; G3: 10.04 ± 2.37; G4: 12.74 ± 5.15; G5: 10.99 ± 3.35; G6: 6.09 ± 1.84. Data were compared by one-way ANOVA and Tukey's test at 5% significance level. Bond strength recorded after 2-min acid etching was significantly higher than 4-min etching (p<0.05) and control (p<0.05), but did not differ significantlyfrom sandblasting alone (p>0.05) or followed by etching for 2 or 4 min (p>0.05). Within the limitations of an in vitro study, it may be concluded that 2-min hydrofluoric acid etching produced a favorable micromechanical retention that enhanced resin cement bond strength to porcelain.


Sign in / Sign up

Export Citation Format

Share Document