scholarly journals Chemical and physical properties of an anthropogenic dark earth soil from Bragança, Para, Eastern Amazon

2016 ◽  
Vol 46 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Luma Castro de SOUZA ◽  
Herdjania Veras de LIMA ◽  
Sueli RODRIGUES ◽  
Dirse Clara KERN ◽  
Álvaro Pires da SILVA ◽  
...  

ABSTRACT Although anthropogenic dark earth (ADE) is generally found in non-floodable land, it also occurs on floodplains but, there is no information about the chemical and physical characteristics of ADE in this environment. In this study, we propose to check the hypothesis that a Gleysol, classified as ADE, presents improved chemical and physical conditions than an adjacent soil, no anthropogenic. Thus, the objective of this study was to characterize the chemical and physical properties of the top layer of two ADE profiles in a Gleysol and compare them with an adjacent soil. Samples were taken from two areas classified as ADE in Bragança, Pará State, Brazil, at the "Jabuti" archaeological site, and from an adjacent non-anthropogenic site. Disturbed and undisturbed soil samples were collected at the soil depth of 0.05-0.10 m for chemical (pH, potential acidity, exchangeable cations, and soil organic carbon) and physical (soil particle size distribution, particles density, water retention curve, total porosity, microporosity, macroporosity, and bulk density) analysis. The two areas of ADE in a Gleysol, showed improved soil chemical properties compared to the adjacent soil, particularly in relation to phosphorus and calcium levels that contributed to higher cation exchange capacity which, in turn, was positively related to organic carbon content. Changes in soil physical properties were less noticeable but both areas of ADE presented higher water retention capacity, particularly at low tension. The improved conditions of the ADE soil under Gleysols shows that these areas are adequate for soil cultivation, especially with plants adapted to floodplain.

Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 682 ◽  
Author(s):  
D. Moret-Fernández ◽  
C. Peña-Sancho ◽  
B. Latorre ◽  
Y. Pueyo ◽  
M. V. López

Estimation of the soil–water retention curve, θ(h), on undisturbed soil samples is of paramount importance to characterise the hydraulic behaviour of soils. Although a method of determining parameters of the water retention curve (α, a scale parameter inversely proportional to mean pore diameter and n, a measure of pore size distribution) from saturated hydraulic conductivity (Ks), sorptivity (S) and the β parameter, using S and β calculated from the inverse analysis of upward infiltration (UI) has been satisfactorily applied to sieved soil samples, its applicability to undisturbed soils has not been tested. The aim of the present study was to show that the method can be applied to undisturbed soil cores representing a range of textures and structures. Undisturbed soil cores were collected using stainless steel cylinders (5cm internal diameter×5cm high) from structured soils located in two different places: (1) an agricultural loam soil under conventional, reduced and no tillage systems; and (2) a loam soil under grazed and ungrazed natural shrubland. The α and n values estimated for the different soils using the UI method were compared with those calculated using time domain reflectometry (TDR) pressure cells (PC) for pressure heads of –0.5, –1.5, –3, –5, –10 and –50kPa. To compare the two methods, α values measured with UI were calculated to the drying branch of θ(h). For each treatment, three replicates of UI and PC calculations were performed. The results showed that the 5-cm high cylinders used in all experiments provided accurate estimates of S and β. Overall, the α and n values estimated with UI were larger than those measured with PC. These differences could be attributed, in part, to limitations of the PC method. On average, the n values calculated from the optimised S and β data were 5% larger than those obtained with PC. A relationship with a slope close to 1 fitted the n values estimated using both methods (nPC=0.73 nUI+0.49; R2=0.78, P<0.05). The results show that the UI method is a promising technique to estimate the hydraulic properties of undisturbed soil samples.


2010 ◽  
Vol 34 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Andréia Patrícia Andrade ◽  
Álvaro Luiz Mafra ◽  
Gizele Rejane Baldo ◽  
Cristiano Dela Piccolla ◽  
Ildegardis Bertol ◽  
...  

Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT) and no-tillage (NT), for 12 years in rotation (r) and succession (s) cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl), using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm) was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.


Soil Research ◽  
2006 ◽  
Vol 44 (5) ◽  
pp. 487 ◽  
Author(s):  
K. M. Hati ◽  
A. Swarup ◽  
D. Singh ◽  
A. K. Misra ◽  
P. K. Ghosh

Effects of continuous cropping, fertilisation, and manuring on soil organic carbon content and physical properties such as particle size distribution, bulk density, aggregation, porosity, and water retention characteristics of a Typic Ustochrept were examined after 31 cycles of maize–wheat–cowpea (fodder) crop rotation. Five contrasting nutrient treatments from a long-term fertiliser experiment were chosen for this study: control (no fertiliser or manure); 100% (optimum dose) nitrogen (N) fertiliser; 100% nitrogen and phosphorus (NP); 100% nitrogen, phosphorus, and potassium (NPK); 100% NPK + farmyard manure (NPK+FYM). The NPK+FYM treatment significantly improved soil organic carbon (SOC) content in 0–0.15 m soil compared with the other 4 treatments; the NPK treatment resulted in significantly more SOC than the control and N treatments (P < 0.05). The SOC in NPK and NPK+FYM treatments was 38.6 and 63.6%, respectively, more than the initial level of SOC (4.4 g/kg) after 31 cycles of cropping. The control and N treatments maintained the SOC status of the soil at the initial value. NPK+FYM significantly improved soil aggregation, soil water retention, microporosity, and available water capacity and reduced bulk density of the soil at 0–0.30 m depth. Greater crop growth under the NPK treatment resulted in increased organic matter content of soil, which improved aggregate stability, water retention capacity, and microporosity compared with the control. The effects were more conspicuous with the NPK+FYM treatment and at the surface soil (0–0.15 m). Application of imbalanced inorganic fertiliser (N and NP treatments) did not have a deleterious effect on the physical properties of the soil compared with the control. SOC content showed a highly significant and positive correlation with mean weight diameter (0.60), % water-stable macro-aggregates (0.61), and soil water retention at –0.033 MPa (0.75) and –1.5 MPa (0.72), and negative correlation with bulk density (–0.70) for the surface 0–0.15 m soil. The study thus suggests that application of balanced mineral fertilisers in combination with organic manure sustains a better soil physical environment and higher crop productivity under intensive cultivation.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Syafrimen Yasin ◽  
Gusnidar Gusnidar ◽  
Dedy Iskandar

A research conducted in Sungai Rumbai, Dharmasraya Regency and in Soil Laboratory Andalas university was aimed to evaluate soil fertility status on the depth below 0-20 cm from several land use types , especially under Mixed Garden and annual cultivated dryland soil.  Soil samples were taken on Ultisol at 0-8% slope (late-waving soil surface).  Land use types evaluated were forest, annual cultivated dryland, bush land, rangeland covered by Imperata cylindrica and mixed garden.  Composite soil samples for soil chemical analysis were taken on the 0-20 cm soil depth with four replications, and 5 drillings for each replication.  Undisturbed soil samples by using sample ring were used to analyze sol bulk volume.  The data resulted were compared to the criteria and were statistically tested using Analysis of Variance and then were continued by LSD at 5% level.  From the results of analyses could be concluded that land use  for mixed garden had the higher Organic Carbon (OC) content and the lower bulk volume (BV) than those for annual cultivated dryland soil.Key Words: Degradasi Lahan, Kebun Campuran, Tegalan


Author(s):  
Md. Rafiqul Islam ◽  
Golam Kibria Muhammad Mustafizur Rahman ◽  
Md. Abu Saleque

A laboratory experiment was conducted in Soil Science Division of Bangladesh Rice Research Institute (BRRI) during 2010-11 aimed to determine the effects of different industrial effluents on some soil chemical properties under long-term industrial wastewater irrigated rice field. Effluents irrigation created some differences in soil pH, electrical conductivity and organic carbon. The pH in all soil depth was higher with wastewater irrigated rice field. Irrigation with wastewater increased in all the effluents irrigated rice fields; the electrical conductivity (EC) was remarkable higher with  all soil depth than the control field. In all the rice fields soil (Control + effluents irrigated fields), the organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was slightly higher with wastewater irrigated rice soils. Exchangeable cations (Ca, Mg, K and Na), trace elements (Zn, Fe, Mn and Cu) and heavy metals (Pb, Cd, Cr and Ni) were increased through irrigation with wastewater in rice–rice cropping pattern.


2016 ◽  
Vol 2 (1) ◽  
pp. 10 ◽  
Author(s):  
B.H. Prasetyo ◽  
S. Suping ◽  
Subagyo H. ◽  
Mujiono Mujiono ◽  
H. Suhardjo

Tidal flats in the Musi Banyuasin region that cover more than 200,000 ha are the largest area for agricultural development in South Sumatra Province. Only about a half of this has been used for tidal swamp rice fields, therefore, the other half needs to be developed. To obtain a better understanding of their properties for appropriate soil management, soil characteristics of the area need to be studied. To characterize the soil, thirty-four soil samples from seven soil profiles were analyzed for their chemical and mineralogical composition at the laboratories of the Center for Soil and Agroclimate Research and Development. The results indicate that soils from the tidal flat areas have an aquic soil moisture regime, the upper parts of the soils are mostly ripe, and most of the pedons show the presence of sulfidic materials below 65 cm of the mineral soil surface. The soils are classified as Sulfic Endoaquept (P1, P2), Histic Sulfaquent (P3), Typic Sulfaquept (P4), Fluvaquentic Endoaquept (P5), and Sulfic Hydraquent (P6, P7). Mineral composition of the sand fraction is dominated by quartz, while the clay minerals consist of predominantly kaolinite, mixed with small amount of smectite, illite, quartz, and crystoballite. Organic carbon content is high to very high, potential phosphate content of most pedons ranges from very low to medium, while potential potassium content varies from very low to medium in the upper layers and medium to very high in the bottom layers. Phosphate retention of topsoil sample varies from 56 to 97%, and is positively correlated (r2 = 0.73) with aluminum from amorphous materials. Exchangeable cations are dominated by Mg cation, and in all pedons cation exchange capacity values are medium to very high, and seem to be influenced by organic carbon. Specific chemical properties, particularly soil pH and content of exchangeable aluminum exhibit a significant change about 1-2 months after soil samples were taken from the field. Theoretically, interaction between good water management and fertilizer application are among the choices of management to make these soils productive.


Soil Research ◽  
1988 ◽  
Vol 26 (3) ◽  
pp. 549 ◽  
Author(s):  
KY Chan ◽  
JA Mead

The infiltration behaviour and physical properties of a hardsetting sandy loam soil at Cowra, N.S.W., following 2 years of different tillage treatments are reported. Soil that had not been cultivated for 25 years was also investigated at an adjacent pasture site. Infiltration of simulated rainfall at the end of the wheat-growing season gave moisture profiles that were quite different for cultivated, direct drilled and pasture soils. The moisture profile for the cultivated soil suggested the presence of an impeded layer which retarded the movement of infiltrated rain to the subsoil. Porosity measurements confirmed the presence of a layer with significantly fewer macropores (> 300 �m diameter) at the 50-100 mm depth in the cultivated soil, when compared with the direct drilled soil. The old pasture soil had significantly higher porosity (> 300 �m diameter) in the top 100 mm. Aggregate stabilities and organic carbon contents were measured in narrow increments to 150 mm depth for the three different soils, and revealed that a surface 25 mm layer of high organic carbon and highly stable macro-aggregates was present in the pasture and direct drilled soils but absent in the cultivated soil. The unstable surface layer in the conventionally cultivated soil was a consequence of the mixing and inverting action of cultivation and was not due to a net loss of organic carbon from the profile. The organic carbon content of the pasture soil was not significantly different from the direct drilled soil below 50 mm; however, it was significantly lower than the conventionally cultivated soil between 50 and 150 mm depth. These results indicate a need to adopt tillage practices that can preserve the top 25 mm layer of such fragile soils.


2021 ◽  
Author(s):  
Calogero Schillaci ◽  
Sergio Saia ◽  
Aldo Lipani ◽  
Alessia Perego ◽  
Claudio Zaccone ◽  
...  

&lt;p&gt;Legacy data are frequently unique sources of data for the estimation of past soil properties. With the rising concerns about greenhouse gases (GHG) emission and soil degradation due to intensive agriculture and climate change effects, soil organic carbon (SOC) concentration might change heavily over time.&lt;/p&gt;&lt;p&gt;When SOC changes is estimated with legacy data, the use of soil samples collected in different plots (i.e., non-aligned data) may lead to biased results. The sampling schemes adopted to capture SOC variation usually involve the resampling of the original sample using a so called paired-site approach.&lt;/p&gt;&lt;p&gt;In the present work, a regional (Sicily, south of Italy) soil database, consisting of N=302 georeferenced soil samples from arable land collected in 1993 [1], was used to select coinciding sites to test a former temporal variation (1993-2008) obtained by a comparison of models built with data sampled in non-coinciding locations [2]. A specific sampling strategy was developed to spot SOC concentration changes from 1994 to 2017 in the same plots at the 0-30 cm soil depth and tested.&lt;/p&gt;&lt;p&gt;To spot SOC changes the minimum number of samples needed to have a reliable estimate of SOC variation after 23 years has been estimated. By applying an effect size based methodology, 30 out of 302 sites were resampled in 2017 to achieve a power of 80%, and an a=0.05.&lt;/p&gt;&lt;p&gt;After the collection of the 30 samples, SOC concentration in the newly collected samples was determined in lab using the same method&lt;/p&gt;&lt;p&gt;A Wilcoxon test applied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference in SOC concentration after 23 years (Z = -0.556; 2-tailed asymptotic significance = 0.578). In particular, only 40% of resampled sites showed a higher (not always significant) SOC concentration than in 2017.&lt;/p&gt;&lt;p&gt;This finding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% increase when estimated as differences of 2 models built with non-aligned data) [2], when compared to 1994 observed data (Z = -9.119; 2-tailed asymptotic significance &lt; 0.001).&lt;/p&gt;&lt;p&gt;Such a result implies that the use of legacy data to estimate SOC concentration changes need soil resampling in the same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of the sites to resample in order to align two legacy datasets in the same area.&lt;/p&gt;&lt;p&gt;Bibliography&lt;/p&gt;&lt;p&gt;[1]Schillaci C, et al.,2019. A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. CATENA.&lt;/p&gt;&lt;p&gt;[2]Schillaci C, et al., 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci Total Environ.&amp;#160;&lt;/p&gt;


2019 ◽  
Vol 886 ◽  
pp. 3-7 ◽  
Author(s):  
Wutthikrai Kulsawat ◽  
Boonsom Porntepkasemsan ◽  
Phatchada Nochit

Paddy residues are the most generous agricultural biomass from the paddy cultivation, Paddy residues practices include crop residue amendment and in-situ burning. It indicated that residue amendment increased the organic carbon and nutrient contents in soil, However, an open residue burning is still a common practice in Thailand despite of strict law enforcements and proper education to farmers about its implications on soil, human and animal health The present study determined how residues management practices: residue amendment and stubble burning, influence the soil organic carbon by determining δ13C in paddy soil profile. The 30 cm depth soil samples from the naturally straw amendment and stubble burning paddy fields were collected in Chiang Khwan district, Roi-et province during 2017. The δ13C values with soil depth showed that residue management practices produce statistical differences in both soils. The δ13C values of soil samples from amendment and burning sites ranged from-23.19‰ to-17.98‰ and-24.79‰ to-19.28‰, respectively. Carbon isotopes differentiate clearly between amendment site (more positive values) and burning site (more negative values). The results from this study were in accordance with literatures which reported that the δ13C distribution in the soil profile can be applied to study in SOC dynamics as a result of different paddy residue management practices (amendment or burning). Further research is needed to confirm the validity of the stable carbon isotope technique in this type of studies.


Sign in / Sign up

Export Citation Format

Share Document