scholarly journals BIOMASS AND NUTRIENT CYCLING BY COVER CROPS IN BRAZILIAN CERRADO IN THE STATE OF PIAUI

2017 ◽  
Vol 30 (1) ◽  
pp. 13-23 ◽  
Author(s):  
LEANDRO PEREIRA PACHECO ◽  
◽  
MARINETE MARTINS DE SOUSA MONTEIRO ◽  
FABIANO ANDRÉ PETTER ◽  
JÚLIO CÉSAR AZEVEDO NÓBREGA ◽  
...  

ABSTRACT Research on the performance of cover crops in crop systems of annual crops in the Brazilian state of Piauí contributes to increases in yield, greater efficiency of fertilizers and mitigation of environmental impacts. The aim of this study was to evaluate the performance of cover crops in terms of biomass production and the accumulation and release of nutrients during the crop season (November to April) in an oxisol in the Brazilian Cerrado in the state of Piauí that was submitted to different crop production systems including soybeans, maize and upland rice. The experiment was established during the 2010/11 and 2011/12 crop years in the rural area near the municipality of Bom Jesus, Piauí. The experimental design was a randomized block in a split-plot array. Different soil management systems (conventional and no-till) were evaluated in the main plots. Different crop production systems consisting of cover crops sown in the off-season (April to November), and annual crops sown during the crop season (November to April) were implemented in the subplots. The crop production systems that included Urochloa ruziziensis and Pennisetum glaucum overseeded on soybeans and Urochloa ruziziensis simultaneously intercropped with maize stood out in terms of biomass production and the accumulation and release of nutrients. Yields of maize and upland rice declined when sown under newly implemented no-till soil management.

2017 ◽  
Vol 52 (8) ◽  
pp. 582-591 ◽  
Author(s):  
Leandro Pereira Pacheco ◽  
Andressa Selestina Dalla Côrt São Miguel ◽  
Rayane Gabriel da Silva ◽  
Edicarlos Damacena de Souza ◽  
Fabiano André Petter ◽  
...  

Abstract: The objective of this work was to evaluate the biomass (leaves and stems) production of annual and cover crops sown as second crop, and its effects on soybean yield in succession. The experiment was carried out in the 2014/2015 and 2015/2016 crop seasons. Soybean was sown in the crop season and in the second crop, in a randomized complete block design, in nine production systems (treatments) consisting of annual crops (corn, sunflower, and cowpea) and cover crops (Pennisetum glaucum, Crotalaria breviflora, C. spectabilis, Urochloa ruziziensis, Cajanus cajan, Stylosanthes sp., and U. brizantha), which were grown in monocropping or intercropping systems, besides fallow as a control. Monocropped P. glaucum and U. ruziziensis showed a faster establishment and growth of plants, higher-total biomass and soil cover rate in the 2014 crop season. In 2015, corn intercropped with U.ruziziensis and C.spectabilis, and sunflower with U.ruziziensis stood out for total biomass production during flowering and after harvesting of corn and sunflower grains. Biomass composition in the systems showed greater proportions of stems than of leaves, and C.spectabilis stood out after senescence. Sown as a second crop, C. spectabilis promotes yield increase of soybean grown in succession in the no-tillage system.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
RICARDO SFEIR DE AGUIAR ◽  
PAULO VICENTE CONTADOR ZACCHEO ◽  
CARMEN SILVIA VIEIRA JANEIRO NEVES ◽  
MARCELO SFEIR DE AGUIAR ◽  
FERNANDO TEIXEIRA DE OLIVEIRA

ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb), forage turnip (Raphanus sativus L. var. oleiferus), consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test), and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.


2022 ◽  
pp. 112-120
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Lynn Epstein ◽  
Jeffery A. Dahlberg ◽  
Teamrat Ghezzehei ◽  
...  

To meet the requirements of California's Sustainable Groundwater Management Act, there is a critical need for crop production strategies with less reliance on irrigation from surface and groundwater sources. One strategy for improving agricultural water use efficiency is reducing tillage and maintaining residues on the soil surface. We evaluated high residue no-till versus standard tillage in the San Joaquin Valley with and without cover crops on the yields of two crops, garbanzo and sorghum, for 4 years. The no-till treatment had no primary or secondary tillage. Sorghum yields were similar in no-till and standard tillage systems while no-till garbanzo yields matched or exceeded those of standard tillage, depending on the year. Cover crops had no effect on crop yields. Soil cover was highest under the no-till with cover crop system, averaging 97% versus 5% for the standard tillage without cover crop system. Our results suggest that garbanzos and sorghum can be grown under no-till practices in the San Joaquin Valley without loss of yield.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


1999 ◽  
Vol 9 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Ronald D. Morse

Advantages of no-till (NT) production systems are acknowledged throughout the world. During the 1990s, production of NT vegetable crops has increased for both direct seeded and transplanted crops. Increased interest in reduced-tillage systems among research workers and vegetable growers is attributed to: 1) development and commercialization of NT transplanters and seeders, 2) advancements in the technology and practice of producing and managing high-residue cover crop mulches, and 3) improvements and acceptance of integrated weed management techniques. Results from research experiments and grower's fields over the years has shown that success with NT transplanted crops is highly dependent on achieving key production objectives, including: 1) production of dense, uniformly distributed cover crops; 2) skillful management of cover crops before transplanting, leaving a heavy, uniformly distributed killed mulch cover over the soil surface; 3) establishment of transplants into cover crops with minimum disturbance of surface residues and surface soil; and 4) adoption of year-round weed control strategies.


2018 ◽  
pp. 91-92
Author(s):  
Márta Birkás

Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality. The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows: − Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture; − Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming; − Crop production system, integrated pest management, integrated farming, high-tech farming; − Site specific production, site-specific technology, spatial variable technology, satellite farming; − Precision farming. Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are: 1) Preserving climate-induced stresses endangering soils. 2) Turn to use climate mitigation soil tillage and crop production systems. 3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common). 4) Use effectual water conservation tillage. 5) Use soil condition specific tillage depth and method. 6) Adapting the water and soil conservation methods in irrigation. 7) Preserving and improving soil organic matter content by tillage and crop production systems. 8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed. 9) Site-specific adoption of green manure and cover crops. 10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long.


2014 ◽  
Vol 94 (4) ◽  
pp. 771-783 ◽  
Author(s):  
Harun Cicek ◽  
Martin H. Entz ◽  
Joanne R. Thiessen Martens ◽  
Paul R. Bullock

Cicek, H., Entz, M. H., Thiessen Martens, J. R. and Bullock, P. R. 2014. Productivity and nitrogen benefits of late-season legume cover crops in organic wheat production. Can. J. Plant Sci. 94: 771–783. When full-season cover crops are used in stockless organic rotations, cash crop production is compromised. Including winter cereals in rotations can widen the growing season window and create a niche for late-season cover crops. We investigated the establishment and biomass production of relay-cropped red clover (Trifolium pratense L.) and sweet clover (Melilotus officinalis L. ‘Norgold’) and double-cropped cowpea (Vigna unguiculata L. ‘Iron and Clay’), hairy vetch (Vicia villosa L.), lentil (Lens culinaris L. ‘Indianhead’), soybean (Glycine max L. ‘Prudence’), pea (Pisum sativum L. ‘40-10’), and oil seed radish (Raphanus sativus L.) as well as wheat response to these crops under reduced tillage (RT) and conventional tillage (CT) at three locations in Manitoba, Canada. Red clover, sweet clover and pea produced from 737 to 4075 and 93 to 1453 and 160 to 2357 kg ha−1of biomass, respectively. All double crops, with the exception of soybean at 2 site years, established successfully under both RT and CT. The presence of cover crops increased wheat N uptake at stem elongation, maturity and yield, even when the biomass production of cover crops was modest. We conclude that late-season cover crops enhance the following wheat yield and facilitate reduced tillage in organic crop production.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 595
Author(s):  
Ted S. Kornecki ◽  
Manuel R. Reyes

The number of local small farms in the USA is on the rise due to a consumer demand for locally grown produce such as tomatoes. These farms often use small walk-behind tractors, but most field activities are still performed by hand requiring heavy physical labor. Recent efforts from USDA have been encouraging producers to adopt no-till techniques using cover crops for benefits such as reduced runoff and soil erosion, increased infiltration and water holding capacity, increased soil organic carbon, decreased soil compaction and improved weed control. However, lack of specialized no-till equipment inhibits widespread adoption of cover crops. To help small farms reduce hand labor and adoption of conservation systems with cover crops, no-till equipment such as a no-till drill, powered roller/crimper, and no-till transplanter have been developed for walk-behind tractors at the National Soil Dynamics Laboratory in Auburn (AL, USA). A replicated three-year field test (2017–2019) was conducted to evaluate effectiveness of the experimental powered coulter drill to plant cereal rye cover crop (Secale cereale, L.), patented powered roller/crimper to terminate rye, and transplanting cash crop tomato (Solanum lycopersicum L.) seedlings with a patented no-till transplanter. These three pieces of equipment were compatible with BCS 853 walk-behind tractor. The experiment was conducted on two different soils: Hiwassee sandy loam soil and Davidson clay to determine the performance of developed machines under different soil types. Results have shown that the powered coulter drill generated effective rye seed emergence (83%) for optimum biomass production. The experimental powered roller/crimper generated 95% rye termination rate three weeks after rolling, and the no-till transplanter performed as anticipated providing less than 10% variation of plant spacing uniformity. Tomato yield varied among years ranging from 15.9 Mg ha−1 to 28.3 Mg ha−1 and was related to different soil and weather conditions at each growing season. Numerically higher tomato yield on Davidson clay might be associated with less insect/pathogen pressure, higher plant available water, and reduced weed pressure due to greater cereal rye biomass production. Results from this experiment indicate that developed experimental equipment can be a practical solution for small no-till farming operations with cover crops.


Sign in / Sign up

Export Citation Format

Share Document