Contributions of leguminous cover crops in yam production systems in Southeastern Nigeria: I Biomass production and weed suppression

2009 ◽  
Vol 2 (2) ◽  
Author(s):  
J.G Ikeorgu ◽  
D.A Okpara ◽  
F.A Oshilim ◽  
J.C Njoku
Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 596-602 ◽  
Author(s):  
Reid J. Smeda ◽  
Stephen C. Weller

Weed control in tomato production systems is difficult because few are registered. The use of rye for weed control and its influence on transplant tomato yields was investigated during 1986 and 1987 at two locations in IN to determine if cover crops can provide an alternative weed management technique. ‘Wheeler’ rye was sown in the fall of 1985 and 1986, and mowed or desiccated with glyphosate at various times before planting ‘IND 812'tomatoes. At the time of glyphosate application, rye residues reduced the growth of overwintering weeds by 93% or more compared to bare ground (no cover crop) areas. The time of desiccating rye prior to planting tomatoes affected the extent of weed suppression by rye residues. In 1986, rye treated 4 wk before planting (WBP) tomatoes provided up to 89% suppression of weed growth at 2 wk after planting (WAP) tomatoes, but no measurable weed suppression 5 WAP tomatoes. Rye treated 2 WBP tomatoes provided up to 97% weed suppression up to 5 WAP tomatoes. In 1987, weed suppression varied between locations and differed from 1986. At Lafayette, rye treated 2 and 1 WBP tomatoes provided greater than 81% suppression of weed growth up to 8 WAP tomatoes. Rye mowed and the residues placed into a plot at a known density also reduced weed growth (60%) 8 WAP tomatoes. At Vincennes, however, rye treated 2 and 1 WBP in 1987 did not reduce weed growth later than 4 WAP tomatoes compared to the unweeded, bare ground treatment. The mowed rye residues at Vincennes suppressed weed growth (96%) up to 8 WAP tomatoes. Tomato yield was correlated to weed suppression. In 1986, tomato yield in the rye treated 2 WBP tomatoes was comparable to yield in the bare ground, weeded controls. However, tomato yield in rye plots treated 4 WBP tomatoes was similar to yield in the bare ground, unweeded control. In 1987, tomato yields in all rye plots (mowed, treated 2 and 1 WBP tomatoes) were similar to tomato yields in the bare ground, weeded control at Lafayette. At Vincennes, only the mowed rye treatment yielded comparably to the bare ground, weeded control. In general, rye plots that were weeded yielded similar to or up to 28% more than a bare ground, weeded control. Tomato yields were not reduced by rye residues. Tomato yields in rye residues that provided effective suppression of weed growth (greater than 80%) for a minimum of 4 to 5 WAP tomatoes were comparable to bare ground, weeded controls.


2017 ◽  
Vol 30 (1) ◽  
pp. 13-23 ◽  
Author(s):  
LEANDRO PEREIRA PACHECO ◽  
◽  
MARINETE MARTINS DE SOUSA MONTEIRO ◽  
FABIANO ANDRÉ PETTER ◽  
JÚLIO CÉSAR AZEVEDO NÓBREGA ◽  
...  

ABSTRACT Research on the performance of cover crops in crop systems of annual crops in the Brazilian state of Piauí contributes to increases in yield, greater efficiency of fertilizers and mitigation of environmental impacts. The aim of this study was to evaluate the performance of cover crops in terms of biomass production and the accumulation and release of nutrients during the crop season (November to April) in an oxisol in the Brazilian Cerrado in the state of Piauí that was submitted to different crop production systems including soybeans, maize and upland rice. The experiment was established during the 2010/11 and 2011/12 crop years in the rural area near the municipality of Bom Jesus, Piauí. The experimental design was a randomized block in a split-plot array. Different soil management systems (conventional and no-till) were evaluated in the main plots. Different crop production systems consisting of cover crops sown in the off-season (April to November), and annual crops sown during the crop season (November to April) were implemented in the subplots. The crop production systems that included Urochloa ruziziensis and Pennisetum glaucum overseeded on soybeans and Urochloa ruziziensis simultaneously intercropped with maize stood out in terms of biomass production and the accumulation and release of nutrients. Yields of maize and upland rice declined when sown under newly implemented no-till soil management.


2020 ◽  
Vol 2 ◽  
Author(s):  
Virginia Nichols ◽  
Lydia English ◽  
Sarah Carlson ◽  
Stefan Gailans ◽  
Matt Liebman

Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye (Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations, with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m−2, respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m−2. All five trials' weed communities were dominated by common waterhemp [Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha−1 yr−1), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.


2015 ◽  
Vol 31 (5) ◽  
pp. 429-440 ◽  
Author(s):  
M. Scott Wells ◽  
Carrie M. Brinton ◽  
S. Chris Reberg-Horton

AbstractCover crop mulches have been successful in reducing weed severity in organic soybeans. This study examined six rye cultivars (SRCs) used as cover crops to determine which were most adapted for use with a roller–crimper in the southeastern U.S. To be an effective mulch, a rye cultivar must produce high biomass and reach reproductive growth stage to facilitate mechanical termination via the roller–crimper prior to soybean planting. Rye cultivars were planted at three locations in North Carolina over the 2009 and 2010 growing seasons. Each rye cultivar was mechanically terminated via a roller–crimper implement. Rye cover crops were terminated on two dates and soybeans were immediately no-till planted into the mulch. In 2009, all rye cultivars produced greater than 9000 kg ha−1 rye biomass dry matter (DM) with the exception of Rymin at Plymouth (2009), but in 2010 only the early flowering cultivars produced in excess of 9000 kg ha−1 DM. There were no detectable soybean yield differences between the SRCs and the weed-free checks, and weed control was excellent across all SRCs at both Plymouth and Salisbury (2009). After an unseasonably cold and wet winter in 2010, the late flowering rye cultivars were not fully controlled by the early termination date due to delayed maturation (less than 65% control at 2 WAP) whereas the early flowering cultivars were fully controlled (100% control at 2 WAP). Rye biomass production was below 9000 kg ha−1 DM for the late flowering and dough development rye cultivars. The early-terminated rye plots had greater weed coverage across all SRCs than those from the late termination date (P < 0.01). However, weeds did not impact soybean yield for either of the termination dates. Soybean yield in 2010 was modeled with rye biomass and soybean population used as covariates, and for both termination dates, soybean yield was proportional to rye biomass production. Early flowering rye cultivars offer producers the widest range of termination opportunities that best coincide with their cash crop planting dates.


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 836-839 ◽  
Author(s):  
Aref A. Abdul-Baki ◽  
Ronald D. Morse ◽  
Thomas E. Devine ◽  
John R. Teasdale

`Emperor' broccoli (Brassica oleraceae L. Botrytis Group) was grown in Fall 1995 at the Beltsville Agricultural Research Center (BARC), Md., and at the Kentland Agricultural Research Farm (KARF), Virginia Polytechnic Institute and State Univ., Blacksburg. The objectives were to determine the effects of cover crop mulches in no-tillage production systems on marketable broccoli yield and weed suppression. The mulch treatments included cover crops of forage soybean (Glycine max L.), foxtail millet (Setaria italica L.P. Beauv), and a combination of soybean and millet. Broccoli marketable yield from all three mulch treatments was equal to that from a conventional clean cultivation system, except for the millet treatment at BARC, which produced a lower yield. All treatments maintained weeds below levels that reduced yield. Cover crop biomass ranged from 4.6 to 9.6 t·ha-1 and N content from 10 g·kg-1 for millet to 28 g·kg-1 for soybean.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 831E-832 ◽  
Author(s):  
William J. Sciarappa* ◽  
Gary C. Pavllis

Weeds are especially problematic in highbush blueberry which has a long establishment period, shallow-fibrous roots, and poor competitive ability in obtaining water, nutrients and sunlight. Commercial approaches in certified organic blueberry fields compared horticultural management methods in two New Jersey sites. The trials utilized both new and established blueberry blocks having trickle or overhead irrigation. Commercial methods investigated included rotary cultivation, mowing, propane flaming, cover crops, landscape fabric, and various mulches. Mulch comparisons included pine bark mulch, hardwood mulch, coffee grinds, cocoa grinds, municipal leaf mulch, and composted tea leaves. 3' × 12' plots were replicated 4 times in 4 adjoining rows. Applications of 3-4 inches of these mulches within the crop row to a new planting of Duke highbush blueberry have provided a combined weed control level of ca. 95% without landscape fabric and ≈98% with landscape fabric during 2003. Walkway weed suppression in new plantings was achieved with the establishment of two types of fine leafed turf fescues and monthly mowings. Bare ground percentage decreased from 80% to <2% within one year's time as these fine fescues gradually out-competed annual weeds for space. These fescue cover crops increased ground coverage from 8% to >95% over the seven month growing season. Such varieties were selected because they have good germination, require little water, use limited nitrogen and can squeeze out weeds through allelopathy. Applied research studies indicate that several suitable methods can be utilized for effective weed management in organic highbush blueberry production systems.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 410-413 ◽  
Author(s):  
Nancy G. Creamer ◽  
Mark A. Bennett ◽  
Benjamin R. Stinner ◽  
John Cardina ◽  
Emilie E. Regnier

Field and laboratory studies were conducted to investigate the mechanisms of weed suppression by cover crops. High-performance liquid chromatograph analysis and a seed germination bioassay demonstrated that rye (Secale cereale L.) can be leached of its allelochemicals, redried, and used as an inert control for separating physical suppression from other types of interference. In a field study, rye, crimson clover (Trifolium incarnatum L.), hairy vetch (Vicia villosa Roth.), barley (Hordeum vulgare L.), and a mixture of the four species suppressed the emergence of eastern black nightshade (Solanum ptycanthum Dun.). Crimson clover inhibited the emergence of eastern black nightshade beyond what could be attributed to physical suppression alone. The emergence of yellow foxtail [Setaria glauca (L.) Beauv.] was inhibited by rye and barley but not by the other cover crops or the cover crop mixture.


Weed Science ◽  
2004 ◽  
Vol 52 (2) ◽  
pp. 281-290 ◽  
Author(s):  
D. C. Brainard ◽  
R. R. Bellinder

Interseeded cover crops have the potential to maintain and improve soil quality, reduce the incidence of insect pests, and suppress weeds in vegetable production systems. However, the successful use of interseeded cover crops has been limited by their tendency to either inadequately suppress weeds or suppress both weeds and the crop. We hypothesized that in irrigated broccoli production, winter rye could suppress annual weeds through rapid emergence and shading, without adversely affecting the taller transplanted broccoli crop. In field experiments conducted in New York from 1999–2001, broccoli was cultivated at 0, 10, or 10 and 20 d after broccoli transplanting (DAT), with or without rye at the final cultivation. Rye interseeded at 0 DAT suppressed weeds and improved yields relative to unweeded controls but resulted in broccoli yield losses relative to weed-free controls in 2 of 3 years. Rye seeded at either 10 or 20 DAT did not reduce broccoli yields but had little effect on weeds for a given level of cultivation and resulted in Powell amaranth seed production of up to 28,000 seeds m−2. Rye interseeded at 0 DAT reduced light availability to weeds in 2000 but not in 2001 when Powell amaranth avoided shading from rye through rapid emergence and vertical growth. In greenhouse pot experiments, low temperatures for 7 d after seeding delayed the emergence of Powell amaranth by 3 d relative to rye and increased the suppression of Powell amaranth by rye from 61 to 85%. Our results suggest that winter rye may be more successfully integrated into broccoli production (1) when sown at higher densities, (2) in locations or seasons (e.g., spring) with lower initial temperatures, and (3) in combination with other weed management tools.


Sign in / Sign up

Export Citation Format

Share Document