scholarly journals EMERGENCE, GROWTH AND PRODUCTION OF SESAME UNDER SALT STRESS AND PROPORTIONS OF NITRATE AND AMMONIUM

2017 ◽  
Vol 30 (2) ◽  
pp. 458-467 ◽  
Author(s):  
ADAAN SUDARIO DIAS ◽  
GEOVANI SOARES DE LIMA ◽  
HANS RAJ GHEYI ◽  
REGINALDO GOMES NOBRE ◽  
JOÃO BATISTA DOS SANTOS

ABSTRACT In arid and semi-arid regions, the quality of irrigation water varies in geographic terms and during the year, and the occurrence of water with high concentrations of salts is common. In this context, this study aimed to evaluate the emergence, growth and production of sesame, cultivar CNPA G3, irrigated with saline water and fertilized with N of different carrier proportions by the ratio of nitrate and ammonium ( NO --N and NH +-N) in an experiment conducted in lysimeters arranged in a greenhouse in the municipality of Campina Grande-PB, Brazil. The treatments were distributed into randomized blocks using a 5 × 5 factorial scheme relative to levels of irrigation water salinity (ECw; 0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and five proportions of NO3 -N/NH4 -N (200/0; 150/50; 100/100; 50/150 and 0/200 mg of N kg-1), with three replicates. The increase in ECw compromised the emergence, growth and production of sesame, cultivar CNPA G3, and the production components were the most sensitive variables. The highest growth in diameter was obtained with the proportion of 200/0 mg kg -1 of NO3 -N/NH4 -N. An ECw level of 3.0 dS m and fertilization with 0/200 mg kg of NO3 -N/NH4 -N promoted deleterious effects on the total mass of sesame fruits and mass of seeds. The interaction between water salinity levels and NO3-/NH4 proportions significantly affected the number of leaves (at 50 and 70 days after sowing), the total mass of fruits and the mass of seeds.


Author(s):  
André A. R. da Silva ◽  
Geovani S. de Lima ◽  
Carlos A. V. de Azevedo ◽  
Lauriane A. dos A. Soares ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The objective of this study was to evaluate growth, flowering and production components of the cotton cv. ‘BRS Topázio’ irrigated with water of different salinity levels and potassium (K) doses in the soil. The research was conducted in a greenhouse. The experiment was set in a randomized complete block design with four replicates, in 4 x 4 factorial arrangement with 4 levels of irrigation water salinity (1.5, 3.0, 4.5 and 6.0 dS m-1) and four K doses (50, 75, 100 and 125% of the recommendation); the dose of 100% corresponded to 150 mg K2O kg-1 of soil. Irrigation water salinity reduced stem diameter, plant height, number of leaves and leaf area of the cotton cv. ‘BRS Topázio’. Leaf area at 53 DAS was the most affected variable. The highest K dose associated with increased salinity of the irrigation water caused a more deleterious effect on the number of leaves and leaf area at 108 DAS. Progressive increases in irrigation water salinity proportionally increased flower abortion rate and, consequently, reduced the total number of bolls and seed weight of cotton.



Author(s):  
Idelfonso L. Bezerra ◽  
Reginaldo G. Nobre ◽  
Hans R. Gheyi ◽  
Leandro de P. Souza ◽  
Francisco W. A. Pinheiro ◽  
...  

ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N) fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1) and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop). The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil) did not mitigate the deleterious effects caused by salt stress on plant growth.



Author(s):  
Elysson M. G. Andrade ◽  
Geovani S. de Lima ◽  
Vera L. A. de Lima ◽  
Saulo S. da Silva ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The study was carried out to evaluate the photosynthetic efficiency and growth of yellow passion fruit, cultivated under different levels of irrigation water salinity and exogenous application of hydrogen peroxide. The experiment was carried out in greenhouse of the Universidade Federal de Campina Grande, PB, Brazil, using drainage lysimeters with capacity for 100 dm3, filled with Entisol of sandy texture. The experimental design was randomized blocks using a 4 x 4 factorial scheme, with three repetitions, corresponding to four water salinity (0.7; 1.4; 2.1 and 2.8 dS m-1) and four concentrations of hydrogen peroxide (0, 20, 40 and 60 µM). The different concentrations of hydrogen peroxide were applied by soaking the seed for a period of 24 h and spraying the leaves on the adaxial and abaxial sides. At 35 days after transplanting, the interaction between water salinity and hydrogen peroxide concentrations did not significantly interfere with plant physiology and growth, except for the number of leaves. The hydrogen peroxide did not cause significant effects on any of the evaluated plant variables. Increasing salinity of irrigation water led to reduction in gas exchanges at 61 and 96 days after transplanting. Water salinity inhibited the CO2 assimilation, transpiration, stomatal conductance, instantaneous carboxylation efficiency and stem diameter of passion fruit plants.



2018 ◽  
Vol 11 (1) ◽  
pp. 200
Author(s):  
William Fenner ◽  
Edna Maria Bonfim-Silva ◽  
Tonny José Araújo da Silva ◽  
Túlio Santos Martinez ◽  
Thiago Henrique Ferreira Matos Castañon ◽  
...  

Safflower cultivation is an alternative to tropical cropping systems, with a good rusticity and some tolerance to saline stress in some cultivars. With the increase of irrigated areas around the world, salinization of the soil is an inherent concern, being the management of irrigation and cultivated species fundamental. The objective of this study was to evaluate the growth and initial development of safflower culture submitted to irrigation water salinity levels. The experiment was carried out in a greenhouse in a completely randomized design consisting of five irrigation water salinity levels (0, 2, 4, 6 and 8 dS m-1) and six replications. The saline solution was prepared using NaCl and measured with a conductivity meter. Plant height, number of leaves and stem diameter at 26 and 41 days after emergence, and shoot dry weight were evaluated; root volume; root dry mass; total dry mass and dry root/shoot mass ratio at 41 days after plant emergence. There was no visual influence of salinity levels in the evaluations at 26 days after plant emergence. However, 41 days after plant emergence, the increase in salinity levels promoted a decrease in all analyzed variables, except for root volume. Safflower does not tolerate irrigation with saline water. The damages occur from 2 dS m-1, but the largest reductions in the initial development of safflower occur from 6 to 8 dS m-1.



Author(s):  
Aldeir R. Silva ◽  
Francisco T. C. Bezerra ◽  
Lourival F. Cavalcante ◽  
Walter E. Pereira ◽  
Leandro M. Araújo ◽  
...  

ABSTRACT The objective of this work was to evaluate the growth of sugar-apple seedlings under irrigation management with saline water in a substrate with soil amendment. Treatments were obtained from the arrangement between polymer doses (0, 0.2, 0.6, 1.0 and 1.2 g dm-3) and levels of irrigation water electrical conductivity (0.3, 1.1, 2.7, 4.3 and 5.0 dS m-1), associated with irrigation frequencies (daily and every alternate day), and two additional treatments to evaluate container volume (1.30 and 0.75 dm3), using a randomized complete block design, with four replicates. At 120 days after sowing, the variables substrate salinity, stem diameter, plant height, number of leaves and Dickson quality index were determined. Data were submitted to analyses of variance, regression and contrast. Substrate salinity increased with the increase in irrigation water electrical conductivity and polymer doses. Growth and quality of the seedlings were reduced with increasing irrigation water salinity, and highest values of the variables were obtained in seedlings under daily irrigation. Container with larger volume led to higher growth. The use of hydrated polymer at the adopted levels had no effect on growth and quality of seedlings, requiring further studies. To produce sugar-apple seedlings with better quality, irrigation frequency should be daily and water electrical conductivity should be lower than 2 dS m-1.



2017 ◽  
Vol 30 (4) ◽  
pp. 1001-1008
Author(s):  
JOÃO PEDRO ALVES DE AQUINO ◽  
ANTÔNIO AÉCIO DE CARVALHO BEZERRA ◽  
FRANCISCO DE ALCÂNTARA NETO ◽  
CARLOS JOSÉ GONCALVES DE SOUZA LIMA ◽  
RAYLSON RODRIGUES DE SOUSA

ABSTRACT Cowpea is broadly cultivated worldwide, especially in semi-arid or arid regions where soil or irrigation water salt contents can negatively influence the species’ productive capacity. The objective of this study was to evaluate the morphophysiological responses of cowpea genotypes to irrigation water salinity. The experiment was conducted in a greenhouse, under a completely randomized design with nine replications and in a 5x3 factorial scheme. Treatments consisted of five levels of irrigation water electrical conductivity - EC (EC0: 0.55; EC1: 1.60; EC2: 3.20; EC3: 4.80 and EC4: 6.40 dS m-1), applied from the 15th day after sowing (DAS), and three cowpea genotypes (G1: BRS Imponente; G2: MNC04-795F-168 and G3: MNC04-795F-159). EC increases at 35 DAS promoted stem diameter reductions of 8.0% (G1), 11.4% (G2), and 7.7% (G3), indicating different resistance to salinity by each genotype. Leaf area reductions at 25 and 38 DAS were 30.9% and 38.8% for EC0 and EC4, respectively. The BRS Imponente cultivar presented a performance superior to those of G2 and G3 in relation to stem diameter and stem dry matter at 25 DAS, and root-shoot and root-leaf ratios at 38 DAS.



DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 79-86
Author(s):  
José Leôncio de Almeida Silva ◽  
José Francismar de Medeiros ◽  
Iarajane Bezerra do Nascimento ◽  
Jeferson Vieira José ◽  
Neyton de Oliveira Miranda ◽  
...  

The experiment was conducted in 2014, in a completely randomized factorial design (5x6), with three replications. The factors were soil classes (Typic Ustipsamments, Typic Haplustults, Typic Haplustepts, Typic Ustifluvents, and Typic Haplusterts) and levels of irrigation water salinity (0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 dS m-1). Increasing salinity of irrigation water caused increase in leaf contents of macronutrients in all soils. Adequate leaf contents of N, K, and Mg were observed in plants grown in all soils except K in Typic Haplusterts and Mg in Typic Ustipsamments. Appropriate P levels were observed only in Typic Haplustepts, and Ca only in Typic Haplustults and Typic Ustifluvents. Increased salinity of irrigation water caused increased leaf contents of micronutrients in all soils except copper in Typic Ustifluvents, iron in Typic Haplusterts and Typic Haplustults, and manganese in Typic Ustipsamments and Typic Haplustults.



Author(s):  
M. V. Dlamini ◽  
M. T. Masarirambi

Saline irrigation water is becoming an important water source as fresh water is fast becoming a scarce resource in many areas of the world, including Eswatini, especially in arid and semi-arid regions.  A study to test the response of two varieties of spinach (fordhook giant and mustard) to salinity was conducted in a field pot experiment at the Faculty of Agriculture at the Luyengo Campus of the University of Eswatini.  The treatments were laid in a randomized block design (RCBD).  The experiment consisted of four treatments, each replicated twelve times.  Treatments were salinity levels of 0.0 dS/m, 1.5 dS/m, 2.0 dS/m and 3.5 dS/m.  All the treatments were subjected to similar agronomic practices. Spinach was grown and observed for a period of five weeks.  Plant height was measured and the number of leaves counted weekly throughout the experiment. Significant differences (P < 0.05) between salinity treatments were obtained for plant height beginning in week 2 but were more pronounced in week 3, 4 and week 5.  No significant differences were obtained for the number of leaves.  There were however, clear significant differences between spinach irrigated with none saline irrigation water compared to saline irrigation water.   It was concluded that irrigating spinach with saline water of more than 2.0 dS/m drastically reduce plant growth but not the number of leaves under the conditions of the experiment.



Irriga ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 504-517 ◽  
Author(s):  
Lourival Ferreira Cavalcante ◽  
Geocleber Gomes de Sousa ◽  
Saulo Cabral Gondim ◽  
Fernando Luiz Figueiredo ◽  
Ícaro Herbert Lucena Cavalcante ◽  
...  

CRESCIMENTO INICIAL DO MARACUJAZEIRO AMARELO MANEJADO EM DOIS SUBSTRASTOS IRRIGADOS COM ÁGUA SALINA   Lourival Ferreira Cavalcante1; Geocleber Gomes de Sousa2; Saulo Cabral Gondim3; Fernando Luiz Figueiredo1; Ítalo Herbert Lucena Cavalcante4; Adriana Araujo Diniz51Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB,  [email protected] 2Solos e Nutrição de Plantas, Centro de Ciências Agrárias, Universidade Federal Ceará, Fortaleza, CE3Recursos Naturais, Universidade Federal de Campina Grande, Campina Grande, PBUniversidade Federal do Piauí, Bom Jesus, PI5Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB  1 RESUMO             O trabalho foi realizado, no período de outubro a dezembro de 2006, em ambiente protegido do CCA/UFPB – Campus II, Areia, PB, com o objetivo de avaliar os efeitos da salinidade da água de irrigação sobre o crescimento inicial do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Deg) cultivado em diferentes substratos. Os tratamentos foram distribuídos em blocos casualizados com três repetições e 12 unidades experimentais por parcela, arranjados num fatorial 5 x 2, referentes aos valores de condutividade elétrica da água de irrigação ( 0,4; 1,0; 2,0; 3,0 e 4,0 dS m-1 ) e dois substratos, sendo um mais arenoso (Solo Neossolo Regolítico) e o outro mais argiloso, constituído por uma mistura do Neossolo Regolítico (50% ) mais Nitossolo Vermelho eutrófico (50%). O aumento da salinidade da água de irrigação elevou expressivamente o caráter salino dos substratos, refletindo-se na redução do crescimento pelo diâmetro caulinar, área foliar, produção de biomassa das raízes e parte aérea das plantas em ambos os casos, porém com maior intensidade no substrato constituído pela mistura de parte iguais dos solos Neossolo Regolítco e Nitossolo Vermelho. UNITERMOS: Salinidade, irrigação, Passiflora edulis, condutividade elétrica  CAVALCANTE, L. F.; SOUSA, G. G. de; GONDIM, S. C.; FIGUEIREDO, F. L.; CAVALCANTE, Í. H. L.; DINIZ, A. A. INITIAL GROWTH OF YELLOW PASSION FRUIT CROPED IN TWO SUBSTRATS MANAGED WITH SALINE WATER IN TWO SUBSTRATES  2 ABSTRACT                                    This study was carried out, during  the period of October /2006 to December /2006, in green house conditions from Agrarian Sciences Center , Federal University of Paraíba, Paraíba State, Brazil, in order to evaluate the effects of water salinity on initial growth of yellow passion plants (Passiflora edulis f. flavicarpa Deg) cultivated in different substrates. Treatments were distributed in a randomized blocks experimental design with three repetitions and 12 experimental units per parcel, in a factorial arrangement 5 x 2, referring to electrical conductivity of irrigation water levels (0.4; 1.0; 2.0; 3.0 e 4.0 dS m-1) and two substrates, being a sandy (Entisol) and a clay, composed by a mixture of Entisol (50%) and Eutrophic Red Nitosol (50%). The increasing of irrigation water salinity expressively enhanced the saline index of the substrate, reflecting in a plant growth reduction related to stem diameter, leaf area, root mass production and shoot mass production of both substrates, but more expressive for the one with equal parts of Entisol and Red Nitosol. KEYWORDS: Salinity, irrigation, Passiflora edulis, electric conductivity



Author(s):  
Mônica S. da S. Sousa ◽  
Vera L. A. de Lima ◽  
Marcos E. B. Brito ◽  
Luderlândio de A. Silva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT The salinity of water and soil reduces the growth and production of crops, especially the fruit trees, such as papaya. Thus, it is necessary to obtain management alternatives for cultivation under these conditions. Therefore, the objective of this study was to evaluate the growth and phytomass of papaya cultivated under irrigation with saline water and organic fertilization. An experiment was set up using a randomized block design, with the treatments distributed in a 5 x 2 factorial scheme, consisting of five levels of salinity of irrigation water (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and two levels of organic fertilization (10 and 20 L of bovine manure per plant), with three replications, totaling thirty experimental plots. Growth variables of papaya were evaluated. Papaya plants were negatively affected by irrigation water salinity, with a greater effect on the number of leaves and on dry phytomass of leaves, with no effect of bovine manure levels.



Sign in / Sign up

Export Citation Format

Share Document